#*-coding:utf-8-* """ 将keras的.h5的模型文件,转换成TensorFlow的pb文件 """ # ========================================================== from keras.models import load_model import tensorflow as tf import os from keras import backend from keras.applications.mobilenetv2 import MobileNetV2 from keras.layers import Input from keras.preprocessing import image from keras.applications.mobilenetv2 import preprocess_input, decode_predictions from keras.applications.inception_resnet_v2 import InceptionResNetV2 def h5_to_pb(h5_model, output_dir, model_name, out_prefix="output_", log_tensorboard=True): """.h5模型文件转换成pb模型文件 Argument: h5_model: str .h5模型文件 output_dir: str pb模型文件保存路径 model_name: str pb模型文件名称 out_prefix: str 根据训练,需要修改 log_tensorboard: bool 是否生成日志文件 Return: pb模型文件 """ if os.path.exists(output_dir) == False: os.mkdir(output_dir) out_nodes = [] for i in range(len(h5_model.outputs)): out_nodes.append(out_prefix + str(i + 1)) tf.identity(h5_model.output[i], out_prefix + str(i + 1)) sess = backend.get_session() from tensorflow.python.framework import graph_util, graph_io # 写入pb模型文件 init_graph = sess.graph.as_graph_def() main_graph = graph_util.convert_variables_to_constants(sess, init_graph, out_nodes) graph_io.write_graph(main_graph, output_dir, name=model_name, as_text=False) # 输出日志文件 if log_tensorboard: from tensorflow.python.tools import import_pb_to_tensorboard import_pb_to_tensorboard.import_to_tensorboard(os.path.join(output_dir, model_name), output_dir) if __name__ == '__main__': # .h模型文件路径参数 input_path = '../models/' weight_file = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5' #weight_file = 'mobilenet_v2_weights_tf_dim_ordering_tf_kernels_1.4_224.h5' weight_file_path = os.path.join(input_path, weight_file) output_graph_name = weight_file[:-3] + '.pb' # pb模型文件输出输出路径 output_dir = input_path # 加载模型 h5_model = 0 if weight_file.find("mobile")!=-1: input_tensor = Input(shape=(224, 224, 3)) # or you could put (None, None, 3) for shape. h5_model = MobileNetV2(input_tensor=input_tensor, alpha=1.4, include_top=True,weights=input_path+weight_file) elif weight_file.find("inception_resnet")!=-1: h5_model = InceptionResNetV2("imagenet",include_top=True,) h5_model.summary() h5_to_pb(h5_model, output_dir=output_dir, model_name=output_graph_name) print('Finished')