以向量加法为例,包含三个文件:kernel.h,kernel.cu,test.cpp
kernel.h:
#ifndef __KERNEL_H_
#define __KERNEL_H_
extern "C" void runtest();
#endif
kernel.cu:
#include "kernel.h"
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include
template
class operate {
public:
cudaError_t addWithCuda(T *c, const T *a, const T *b, unsigned int size);
};
template
void __global__ addKernel1(T *c, const T *a, const T *b)
{
int i = threadIdx.x;
c[i] = a[i] + b[i];
}
template
cudaError_t operate::addWithCuda(T *c, const T *a, const T *b, unsigned int size)
{
T *dev_a = 0;
T *dev_b = 0;
T *dev_c = 0;
cudaError_t cudaStatus;
// Choose which GPU to run on, change this on a multi-GPU system.
cudaStatus = cudaSetDevice(0);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU installed?");
goto Error;
}
// Allocate GPU buffers for three vectors (two input, one output) .
cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(T));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(T));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(T));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
// Copy input vectors from host memory to GPU buffers.
cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(T), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(T), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
// Launch a kernel on the GPU with one thread for each element.
addKernel1<<<1, size>>>(dev_c, dev_a, dev_b);
// Check for any errors launching the kernel
cudaStatus = cudaGetLastError();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addKernel launch failed: %s\n", cudaGetErrorString(cudaStatus));
goto Error;
}
// cudaDeviceSynchronize waits for the kernel to finish, and returns
// any errors encountered during the launch.
cudaStatus = cudaDeviceSynchronize();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
goto Error;
}
// Copy output vector from GPU buffer to host memory.
cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(T), cudaMemcpyDeviceToHost);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
Error:
cudaFree(dev_c);
cudaFree(dev_a);
cudaFree(dev_b);
return cudaStatus;
}
extern "C" void runtest()
{
const int arraySize = 5;
const double a_d[arraySize] = { 1.1, 2.2, 3.3, 4.4, 5.5 };
const double b_d[arraySize] = { 10.1, 20.1, 30.1, 40.1, 50.1 };
double c_d[arraySize] = { 0 };
// Add vectors in parallel.
operate op;
cudaError_t cudaStatus = op.addWithCuda(c_d, a_d, b_d, arraySize);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addWithCuda failed!");
return;
}
printf("{1.1,2.2,3.3,4.4,5.5} + {10.1,20.1,30.1,40.1,50.1} = {%f,%f,%f,%f,%f}\n",
c_d[0], c_d[1], c_d[2], c_d[3], c_d[4]);
// cudaDeviceReset must be called before exiting in order for profiling and
// tracing tools such as Nsight and Visual Profiler to show complete traces.
cudaStatus = cudaDeviceReset();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceReset failed!");
return;
}
}
test.cpp:
#include "kernel.h"
#include
int main()
{
runtest();
char a=getchar();
return 0;
}