了解奶牛们的人都知道,奶牛喜欢成群结队.观察约翰的N(1≤N≤100000)只奶牛,你会发现她们已经结成了几个“群”.每只奶牛在吃草的时候有一个独一无二的位置坐标Xi,Yi(l≤Xi,Yi≤[1..10^9];Xi,Yi∈整数.当满足下列两个条件之一,两只奶牛i和j是属于同一个群的:
1.两只奶牛的曼哈顿距离不超过C(1≤C≤10^9),即lXi - xil+IYi - Yil≤C.
2.两只奶牛有共同的邻居.即,存在一只奶牛k,使i与k,j与k均同属一个群.
给出奶牛们的位置,请计算草原上有多少个牛群,以及最大的牛群里有多少奶牛
第1行输入N和C,之后N行每行输入一只奶牛的坐标.
仅一行,先输出牛群数,再输出最大牛群里的牛数,用空格隔开.
4 2
1 1
3 3
2 2
10 10
Line 1: A single line with a two space-separated integers: the
number of cow neighborhoods and the size of the largest cow
neighborhood.
2 3
There are 2 neighborhoods, one formed by the first three cows and
the other being the last cow. The largest neighborhood therefore
has size 3.
每个点的坐标改为 x′=x+y,y′=x−y ,这样条件就变成了 max(|x′1−x′2|,|y′1−y′2|)<=c 。
于是将新坐标按x排序,从左往右扫,维护一个队列,其中的元素x坐标之差不超过c,然后每次新加一个点时考虑其y坐标在队列中的点的前驱与后继,如果y坐标之差不超过c则用并查集合并。
#include
using namespace std;
const int MAXN = 100005;
int n, c;
struct Point{
int x, y, id;
Point() {}
Point(int a, int b, int c) : x(a), y(b), id(c) {}
bool operator < (const Point &p) const {
return x < p.x;
}
};
int ans;
Point p[MAXN];
int fa[MAXN], cnt[MAXN];
multisetint , int> > s;
int find(int p) {
if (p == fa[p]) return p;
return fa[p] = find(fa[p]);
}
void un(int a, int b) {
int x = find(a), y = find(b);
if (x != y) ans--;
fa[x] = y;
}
int main() {
scanf("%d %d", &n, &c);
int a, b;
for (int i = 1; i <= n; i++) {
scanf("%d %d", &a, &b);
p[i] = Point(a + b, a - b, i);
}
sort(p + 1, p + n + 1);
for (int i = 1; i <= n; i++)
fa[i] = i;
ans = n;
int l = 1;
s.insert(make_pair(p[1].y, p[1].id));
for (int i = 2; i <= n; i++) {
// cout << p[i].x << ' ' << p[i].y << endl;
while (l < i && p[i].x - p[l].x > c) {
s.erase(s.find(make_pair(p[l].y, p[l].id)));
l++;
}
setint , int> >::iterator it = s.lower_bound(make_pair(p[i].y, p[i].id));
if (it != s.end() && it -> first - p[i].y <= c) un(p[i].id, it -> second);
if (it != s.begin() && p[i].y - (--it) -> first <= c) un(p[i].id, it -> second);
s.insert(make_pair(p[i].y, p[i].id));
}
int ma = 0;
for (int i = 1; i <= n; i++) {
cnt[find(i)]++;
ma = max(ma, cnt[find(i)]);
}
printf("%d %d\n", ans, ma);
return 0;
}