- 机器学习:k均值
golemon.
ML机器学习均值算法人工智能
所有代码和文档均在golitter/Decoding-ML-Top10:使用Python优雅地实现机器学习十大经典算法。(github.com),欢迎查看。在“无监督学习”中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础,较为经典的是聚类。**聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇”。**聚
- 大模型产品Deepseek(三)、API 调用指南
伯牙碎琴
大模型DeepseekAI大模型
DeepSeekAPI调用指南DeepSeek作为一款高效的智能搜索与推荐引擎,为开发者提供了简洁易用的API接口,使得将其集成到各种应用场景中变得更加高效和便捷。在这一章节中,我们将详细介绍如何通过API调用DeepSeek,包括如何进行身份验证、如何提交请求、如何解析响应以及如何通过代码实现基本的搜索与推荐功能。1.DeepSeekAPI概述DeepSeek作为一款高效的智能搜索与推荐引擎,通
- 第N11周:seq2seq翻译实战-Pytorch复现
计算机真好丸
pytorch人工智能python
文章目录一、前期准备1.搭建语言类2.文本处理函数3.文件读取函数二、Seq2Seq模型1.编码器(encoder)2.解码器(decoder)三、训练1.数据预处理2.训练函数3.评估四、评估与训练1.Loss图2.可视化注意力五、总结本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、前期准备from__future__importunicode_literals,print_fu
- 第N5周:Pytorch文本分类入门
计算机真好丸
pytorch分类人工智能
文章目录一、前期准备1.环境安装2.加载数据3.构建词典4.生成数据批次和迭代器二、准备模型1.定义模型2.定义实例三、训练模型1.拆分数据集并运行模型2.使用测试数据集评估模型本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、前期准备1.环境安装确保安装了torchtext与portalocker库2.加载数据importtorch#强制使用CPUdevice=torch.devi
- 第TR5周:Transformer实战:文本分类
计算机真好丸
transformer分类深度学习
文章目录1.准备环境1.1环境安装1.2加载数据2.数据预处理2.1构建词典2.2生成数据批次和迭代器2.3构建数据集3.模型构建3.1定义位置编码函数3.2定义Transformer模型3.3初始化模型3.4定义训练函数3.5定义评估函数4.训练模型4.1模型训练5.总结:本文为365天深度学习训练营中的学习记录博客原作者:K同学啊1.准备环境1.1环境安装这是一个使用PyTorch通过Tran
- 知识图谱大模型系列之 11什么是 Neo4j LLM 知识图谱构建器?
知识大胖
NVIDIAGPU和大语言模型开发教程知识图谱neo4j人工智能llm
简介LLM知识图谱构建器是Neo4j的GraphRAG生态系统工具之一,可让您将非结构化数据转换为动态知识图谱。它与检索增强生成(RAG)聊天机器人集成,可实现自然语言查询和对数据的可解释洞察。推荐文章《使用ChatGPT从视频脚本创建知识图谱,使用GPT-4作为领域专家来帮助您从视频转录中提取知识(教程含完整源码)》权重2,知识图谱类《赋能知识图谱形成:利用BERTopic、DataMapPlo
- AI大模型的技术突破与传媒行业变革
AIQL
行业分析人工智能传媒
性能与成本:AI大模型的“双轮驱动”过去几年,AI大模型的发展经历了从实验室到产业化的关键转折。2025年初,以DeepSeekR1为代表的模型在数学推理、代码生成等任务中表现超越国际头部产品,而训练成本仅为传统模型的几十分之一。这一突破的核心在于三大技术创新:MoE架构升级:通过部署256个细粒度专家网络,减少知识冗余,提升模型效率;MLA注意力机制:动态压缩推理过程中的缓存需求,降低GPU内存
- 工控网络安全学习路线
206333308
安全
一、基础技能编程语言:从汇编语言开始学习,了解底层机器指令和内存管理等基础知识。接着学习C/C++,掌握面向过程和面向对象编程的基本概念和技术,为后续的漏洞挖掘和底层分析打下基础。最后学习Python,它在安全领域应用广泛,可用于自动化脚本编写、漏洞扫描和数据分析等。《计算机网络原理》:掌握网络通信的基本原理,包括OSI七层模型、TCP/IP协议栈、IP地址分配、子网掩码等。了解网络拓扑结构、路由
- 大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统_bert+lstm
2301_76348014
程序员深度学习大数据知识图谱
文章目录大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统一、项目概述二、系统实现基本流程三、项目工具所用的版本号四、所需要软件的安装和使用五、开发技术简介Django技术介绍Neo4j数据库Bootstrap4框架Echarts简介NavicatPremium15简介Layui简介Python语言介绍MySQL数据库深度学习六、核心理论贪心算法A
- 电子电气架构 --- 机器学习推动车载雷达的发展
车载诊断技术
汽车行业车辆信息安全机器学习人工智能电子电器框架网络架构汽车
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师:简单,单纯,喜欢独处,独来独往,不易合同频过着接地气的生活,除了生存温饱问题之外,没有什么过多的欲望,表面看起来很高冷,内心热情,如果你身边有这样灵性的人,一定要好好珍惜他们眼中有神有光,干净,给人感觉很舒服,有超强的感知能力有形的无形的感知力很强,能感知人的内心变化喜欢独处,好静,
- 【K8S系列】Kubernetes 集群中的网络常见面试题
颜淡慕潇
K8S系列深入解析K8S网络kubernetes云原生集群网络
在Kubernetes面试中,网络是一个重要的主题。理解Kubernetes网络模型、服务发现、网络策略等概念对候选人来说至关重要。以下是一些常见的Kubernetes网络面试题及其答案,帮助你准备面试。1.Kubernetes的网络模型是什么样的?问题:Kubernetes的网络模型是怎样的?答案:Kubernetes网络模型遵循“每个Pod都有一个唯一的IP地址”的原则。每个Pod都可以直接通
- DeepSeek进阶开发与应用1:DeepSeek框架概述与基础应用
Evaporator Core
#DeepSeek快速入门DeepSeek进阶开发与应用spring自然语言处理
引言在当今的人工智能领域,深度学习技术已经成为了推动技术进步的核心动力之一。DeepSeek作为一个先进的深度学习框架,旨在为开发者和研究人员提供一个高效、灵活且易于扩展的平台,以便于他们能够快速地实现和部署各种深度学习模型。本文将深入探讨DeepSeek框架的核心架构、基础应用以及如何通过代码实现一个简单的深度学习模型。DeepSeek框架概述DeepSeek框架的设计理念是简洁而强大。它提供了
- 直肠癌远处转移预测模型临床影响力研究Protocol
医学AppMatrix
预测模型构建和评价人工智能大数据机器学习
直肠癌远处转移预测模型临床影响力研究Protocol举例说明AI工具,包括LLM模型和临床预测模型,的临床影响力研究的流程,这是AI工具进入临床实践之前必要的评估流程,如果AI工具与现有的临床工具相比,有正面的临床影响力,即可以使患者收益或者提高效率、节约资源,才可以进入临床实践。需要说明的是,AI工具的临床影响力也可能是负面的,所以临床影响力研究的初期,需要小规模的研究以确定AI工具不是有害的。
- hunyuan-DiT模型部署指南
算家云
模型构建ComfyUI图片生成大模型人工智能pytorchAIGC
一、介绍Hunyuan-DiT是由腾讯混元推出的扩散模型,支持中文和英文双语输入,其他开源模型相比,Hunyuan-DiT在中文到图像生成方面树立了新的水平。二、部署流程环境要求:所需的最小GPU内存为11GB,建议使用具有32GB内存的GPU,以获得更好的生成质量。1.部署ComfyUI本篇的模型部署是在ComfyUI的基础上进行,如果没有部署过ComfyUI,请按照下面流程先进行部署,如已安装
- 深度剖析DeepSeek本地部署:技术、实践与优化策略
Abossss
AI论文pythonai人工智能
一、引言1.1研究背景与意义近年来,人工智能技术以迅猛之势蓬勃发展,成为推动各行业变革的核心力量。其中,大语言模型(LLMs)作为人工智能领域的关键技术,在自然语言处理、智能客服、内容创作等众多领域展现出了强大的应用潜力,引发了学术界和产业界的广泛关注。OpenAI的GPT系列模型凭借其出色的语言理解与生成能力,在全球范围内掀起了AI应用的热潮;Google的BERT模型则在自然语言理解任务中取得
- DeepSeek+WPS/Office手把手教你玩转智能办公
herosunly
DeepSeek从入门到精通deepseek大模型人工智能officewps智能办公
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法Q大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- 使用Python实现深度学习模型:知识蒸馏与模型压缩
Echo_Wish
Python笔记从零开始学Python人工智能Python算法python深度学习开发语言
在深度学习领域,模型的大小和计算复杂度常常是一个挑战。知识蒸馏(KnowledgeDistillation)和模型压缩(ModelCompression)是两种有效的技术,可以在保持模型性能的同时减少模型的大小和计算需求。本文将详细介绍如何使用Python实现这两种技术。目录引言知识蒸馏概述模型压缩概述实现步骤数据准备教师模型训练学生模型训练(知识蒸馏)模型压缩代码实现结论1.引言在实际应用中,深
- Apache ZooKeeper 分布式协调服务
slovess
分布式apachezookeeper
1.ZooKeeper概述1.1定义与定位核心定位:分布式系统的协调服务,提供强一致性的配置管理、命名服务、分布式锁和集群管理能力核心模型:基于树形节点(ZNode)的键值存储,支持Watcher监听机制生态地位:Hadoop/Kafka等生态核心依赖,分布式系统基础设施级组件1.2设计目标强一致性:所有节点数据最终一致(基于ZAB协议)高可用性:集群半数以上节点存活即可提供服务顺序性:全局唯一递
- 基于遗传算法求解带有时间窗、车载容量限制、多车辆、单配送中心路径优化VRPTW(多约束)matlab代码
天天Matlab科研工作室
智能优化算法matlab仿真无人机matlab仿真电子资源matlab算法自动驾驶
1数学模型(1)有关模型的说明和假设1)模型中的已知量有:各需求点的位置坐标、各需求点的物料需求数量,各需求点的物料的到达时间要求,配送中心到各需求点的最短行驶距离,各需求点互相之间的最短运输距离。2)现场调查发现,需要配送的物料是可以混装在同一物料架上的,且各需求点需要的物料数量小于物料仓库的库存量。3)忽略在配送过程中车辆遇到的拥挤排队等不利于生产进行的外界因素,也就是说整个装配车间正常运行。
- Flink SQL 优化实战 - 维表 JOIN 优化
腾讯云大数据
大数据数据库flinksql
作者:龙逸尘,腾讯CSIG高级工程师背景介绍维表(DimensionTable)是来自数仓建模的概念。在数仓模型中,事实表(FactTable)是指存储有事实记录的表,如系统日志、销售记录等,而维表是与事实表相对应的一种表,它保存了事实表中指定属性的相关详细信息,可以跟事实表做关联;相当于将事实表上经常重复出现的属性抽取、规范出来用一张表进行管理。在实际生产中,我们经常会有这样的需求,以原始数据流
- Ollama容器+打造DeepSeek-R1-7B大模型
码哝小鱼
AI大模型docker运维语言模型
1、获取Ollama官方镜像1.1在线拉取镜像#dokcerpullollama/ollama:0.5.71.2导入离线镜像#tar-zxfollama0.5.7_x86.tar.gz#dokcerload-iollama0.5.7.tar2、执行以下命令创建与启动ollama#dockerrun-dp8880:11434--nameollama\-eOLLAMA_HOST=0.0.0.0:114
- DeepSeek R1 与 OpenAI O1:机器学习模型的巅峰对决
学无止尽5
机器学习人工智能
我的个人主页我的专栏:人工智能领域、java-数据结构、Javase、C语言,希望能帮助到大家!!!点赞收藏❤一、引言在机器学习的广袤天地中,大型语言模型(LLM)无疑是最为璀璨的明珠。它们凭借卓越的语言理解与生成能力,正以前所未有的方式重塑着我们与信息交互的模式。DeepSeekR1和OpenAIO1作为其中的佼佼者,代表了当前技术的前沿水准,在架构设计、训练方法、性能表现以及应用场景等诸多层面
- qt UI架构之MVD
yaofei2006
ui架构
在Qt中,MVD(Model-View-Delegate)是一种用于分离数据、显示和用户交互的设计架构。它是MVC(Model-View-Controller)的变体,特别适合用于处理复杂的数据显示和编辑场景(如表格、列表、树形结构等)。1.MVD架构的核心组件MVD架构由以下三个核心组件组成:1.1Model(模型)负责管理数据。提供数据的访问接口(如data()和setData())。通知视图
- 06 Django-orm-多表操作
lzplum619
DjangoLinux相关djangopython
一创建模型实例:我们来假定下面这些概念,字段和关系作者模型:一个作者有姓名和年龄。作者详细模型:把作者的详情放到详情表,包含生日,手机号,家庭住址等信息。作者详情模型和作者模型之间是一对一的关系(one-to-one)出版商模型:出版商有名称,所在城市以及email。书籍模型:书籍有书名和出版日期,一本书可能会有多个作者,一个作者也可以写多本书,所以作者和书籍的关系就是多对多的关联关系(many-
- DeepSeek与ChatGPT的全面对比
测试者家园
人工智能ChatGPTDeepSeekChatGPTDeepSeek人工智能质量效能
在人工智能(AI)领域,生成式预训练模型(GPT)已成为推动技术革新的核心力量。OpenAI的ChatGPT自发布以来,凭借其卓越的自然语言处理能力,迅速占据市场主导地位。然而,近期中国AI初创公司DeepSeek推出的R1模型,以其高效性和低成本,迅速引起全球关注。本文将深入探讨DeepSeek与ChatGPT的技术差异、性能表现以及各自的应用前景,旨在为读者提供全新的视角和启发。一、技术架构与
- 【kafka系列】broker
漫步者TZ
kafka数据库分布式kafka
目录Broker接收生产者消息和返回消息给消费者的流程逻辑分析Broker处理生产者消息的核心流程Broker处理消费者消息的核心流程关键点总结Broker接收生产者消息和返回消息给消费者的流程逻辑分析Broker处理生产者消息的核心流程接收请求Broker的SocketServer接收来自生产者的ProduceRequest(基于Reactor网络模型)。请求解析与验证解析请求头(Topic、P
- Python自学攻略:AI时代的高效学习法 —— 如何用大模型快速上手编程
优化小秦
人工智能
在AI技术爆发的今天,学习Python已不再是传统的“看书+敲代码”模式。借助大语言模型(如Deepseek、GPT、Claude、Kimi、豆包等),学习效率可以提升数倍。本文将结合实操路径、工具链和避坑指南,为你提供一套AI时代的Python速成方案。一、为什么AI能让Python学习效率飙升?实时纠错与解释传统学习:遇到报错需反复查资料,耗时且挫败感强AI辅助:直接将错误信息丢给大模型,1秒
- 【大模型】阿里云百炼平台对接DeepSeek-R1大模型使用详解
小码农叔叔
AI大模型实战与应用DeepSeek-R1使用阿里云对接DeepSeek百炼平台使用DeepSeekDeepSeek使用详解DeepSeek-R1使用详解DeepSeek-R1
目录一、前言二、DeepSeek简介2.1DeepSeek是什么2.2DeepSeekR1特点2.2.1DeepSeek-R1创新点2.3DeepSeekR1应用场景2.4与其他大模型对比三、阿里云百炼大平台介绍3.1阿里云百炼大平台是什么3.2阿里云百炼平台主要功能3.2.1应用场景3.3为什么选择阿里云百炼平台四、前置准备4.1注册百炼平台账户4.2获取apikey4.3本地安装python环
- 《Python与C#:虚拟机与元宇宙的次元战争》
虫洞没有虫
科技资讯\好文分享c#开发语言
一、运行时拓扑的「克莱因瓶」C#的CLR是三维环面结构的完美体现,IL代码在JIT编译时经历时空折叠。Unity引擎中,值类型在栈内存构建莫比乌斯环,使得800万顶点模型渲染保持16ms的帧同步。但当尝试将ECS架构推至理论极限时,发现GC的标记-清除算法会破坏拓扑结构,必须切换到UnityDOTS的Burst编译器实现量子退火优化。Python的PyPy则是四维超球面,JIT编译器在跟踪热点时创
- 《AI对话秘籍:5个Prompt Engineering核心技巧让DeepSeek输出质量翻倍》
Athena-H
PromptEngineering人工智能promptchatgptgptai
引言随着自然语言处理技术的飞速发展,像ChatGPT这样的AI对话系统已经广泛应用于客服、教育、创作等多个领域。然而,如何高效地与这些语言模型进行交互,获得准确、相关且高质量的回复,成为了应用中的一个关键挑战。这时,PromptEngineering(提示词工程)便成为了一项必不可少的技能。PromptEngineering的核心目标是通过优化与模型的输入互动方式,让模型生成更加符合预期的输出。在
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持