#include "stdafx.h"
#include
#include
#include "imgproc/imgproc.hpp"
#include
#include "opencv2/xfeatures2d/nonfree.hpp"
#include
#include "opencv2/opencv.hpp"
using namespace cv;
using namespace std;
//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint, const Mat &transformMaxtri)
{
Mat originelP, targetP;
originelP = (Mat_(3, 1) << originalPoint.x, originalPoint.y, 1.0);
targetP = transformMaxtri * originelP;
float x = targetP.at(0, 0) / targetP.at(2, 0);
float y = targetP.at(1, 0) / targetP.at(2, 0);
return Point2f(x, y);
}
/*************************************************
Copyright:bupt
Author:
Date:2010-08-25
Description:描述主要实现的功能 使用Fast算子提取特征点
**************************************************/
int main(int argc, char *argv[])
{
Mat image01 = imread("image01.jpg");
Mat image02 = imread("image02.jpg");
imshow("拼接图像1", image01);
imshow("拼接图像2", image02);
//灰度图转换
Mat image1, image2;
cvtColor(image01, image1, CV_RGB2GRAY);
cvtColor(image02, image2, CV_RGB2GRAY);
//提取特征点
int minHessian = 800;
Ptr suftDetector = xfeatures2d::SURF::create(minHessian);
vector keyPoint1, keyPoint2;
suftDetector->detect(image1, keyPoint1);
suftDetector->detect(image2, keyPoint2);
//特征点描述,为下边的特征点匹配做准备
Mat imageDesc1, imageDesc2;
suftDetector->compute(image1, keyPoint1, imageDesc1);
suftDetector->compute(image2, keyPoint2, imageDesc2);
//获得匹配特征点,并提取最优配对
FlannBasedMatcher matcher;
vector matchePoints;
matcher.match(imageDesc1, imageDesc2, matchePoints, Mat());
sort(matchePoints.begin(), matchePoints.end()); //特征点排序
//获取排在前N个的最优匹配特征点
vector imagePoints1, imagePoints2;
for (int i = 0; i<10; i++)
{
imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);
imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);
}
//获取图像1到图像2的投影映射矩阵,尺寸为3*3
Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
Mat adjustMat = (Mat_(3, 3) << 1.0, 0, image01.cols, 0, 1.0, 0, 0, 0, 1.0);
Mat adjustHomo = adjustMat * homo;
//获取最强配对点在原始图像和矩阵变换后图像上的对应位置,用于图像拼接点的定位
Point2f originalLinkPoint, targetLinkPoint, basedImagePoint;
originalLinkPoint = keyPoint1[matchePoints[0].queryIdx].pt;
targetLinkPoint = getTransformPoint(originalLinkPoint, adjustHomo);
basedImagePoint = keyPoint2[matchePoints[0].trainIdx].pt;
//图像配准
Mat imageTransform1;
warpPerspective(image01, imageTransform1, adjustMat*homo, Size(image02.cols + image01.cols + 10, image02.rows));
//在最强匹配点的位置处衔接,最强匹配点左侧是图1,右侧是图2,这样直接替换图像衔接不好,光线有突变
Mat ROIMat = image02(Rect(Point(basedImagePoint.x, 0), Point(image02.cols, image02.rows)));
ROIMat.copyTo(Mat(imageTransform1, Rect(targetLinkPoint.x, 0, image02.cols - basedImagePoint.x + 1, image02.rows)));
namedWindow("拼接结果", 0);
imshow("拼接结果", imageTransform1);
waitKey();
return 0;
}
转载地址:https://blog.csdn.net/dcrmg/article/details/52629856