P操作 负责把当前进程由运行状态转换为阻塞状态,直到另外一个进程唤醒它。
操作为:申请一个空闲资源(把信号量减1),若成功,则退出;若失败,则该进程被阻塞;
V操作 负责把一个被阻塞的进程唤醒,它有一个参数表,存放着等待被唤醒的进程信息。
操作为:释放一个被占用的资源(把信号量加1),如果发现有被阻塞的进程,则选择一个唤醒之。
补充:查看共享信息的内存的命令是ipcs [-m|-s|-q] (全部的话是ipcs -a) ;查看共享信息的内存的命令是ipcs [-m|-s|-q]。
int semget(key_t key, int num_sems, int sem_flags);
int semop(int sem_id, struct sembuf *sem_opa, size_t num_sem_ops);
struct sembuf{
short sem_num;//除非使用一组信号量,否则它为0
short sem_op;//信号量在一次操作中需要改变的数据,通常是两个数,一个是-1,即P(等待)操作,
//一个是+1,即V(发送信号)操作。
short sem_flg;//通常为SEM_UNDO,使操作系统跟踪信号,
//并在进程没有释放该信号量而终止时,操作系统释放信号量
};
int semctl(int sem_id, int sem_num, int command, ...);
union semun{
int val;
struct semid_ds *buf;
unsigned short *arry;
};
#if defined(__GNU_LIBRARY__) && !defined(_SEM_SEMUN_UNDEFINED)
/* union semun is defined by including */
#else
/* according to X/OPEN we have to define it ourselves */
union semun {
int val; /* value for SETVAL */
struct semid_ds *buf; /* buffer for IPC_STAT, IPC_SET */
unsigned short int *array; /* array for GETALL, SETALL */
struct seminfo *__buf; /* buffer for IPC_INFO */
};
#endif
/* After the #includes, the function prototypes and the global variable, we come to the
main function. There the semaphore is created with a call to semget, which returns the
semaphore ID. If the program is the first to be called (i.e. it's called with a parameter
and argc > 1), a call is made to set_semvalue to initialize the semaphore and op_char is
set to X. */
#include
#include
#include
#include
#include "semun.h"
static int set_semvalue(void);
static void del_semvalue(void);
static int semaphore_p(void);
static int semaphore_v(void);
static int sem_id;
int main(int argc, char *argv[])
{ int i;
int pause_time;
char op_char = 'O';
srand((unsigned int)getpid());
sem_id = semget((key_t)1234, 1, 0666 | IPC_CREAT);
if (argc > 1) {
if (!set_semvalue()) {
fprintf(stderr, "Failed to initialize semaphore\n");
exit(EXIT_FAILURE);
}
op_char = 'X';
sleep(2);
}
/* Then we have a loop which enters and leaves the critical section ten times.
There, we first make a call to semaphore_p which sets the semaphore to wait, as
this program is about to enter the critical section. */
for(i = 0; i < 10; i++) {
if (!semaphore_p()) exit(EXIT_FAILURE);
printf("%c", op_char);fflush(stdout);
pause_time = rand() % 3;
sleep(pause_time);
printf("%c", op_char);fflush(stdout);
/* After the critical section, we call semaphore_v, setting the semaphore available,
before going through the for loop again after a random wait. After the loop, the call
to del_semvalue is made to clean up the code. */
if (!semaphore_v()) exit(EXIT_FAILURE);
pause_time = rand() % 2;
sleep(pause_time);
}
printf("\n%d - finished\n", getpid());
if (argc > 1) {
sleep(10);
del_semvalue();
}
exit(EXIT_SUCCESS);
}
/* The function set_semvalue initializes the semaphore using the SETVAL command in a
semctl call. We need to do this before we can use the semaphore. */
static int set_semvalue(void)
{
union semun sem_union;
sem_union.val = 1;
if (semctl(sem_id, 0, SETVAL, sem_union) == -1) return(0);
return(1);
}
/* The del_semvalue function has almost the same form, except the call to semctl uses
the command IPC_RMID to remove the semaphore's ID. */
static void del_semvalue(void){
union semun sem_union;
if (semctl(sem_id, 0, IPC_RMID, sem_union) == -1)
fprintf(stderr, "Failed to delete semaphore\n");
}
/* semaphore_p changes the semaphore by -1 (waiting). */
static int semaphore_p(void){
struct sembuf sem_b;
sem_b.sem_num = 0;
sem_b.sem_op = -1; /* P() */
sem_b.sem_flg = SEM_UNDO;
if (semop(sem_id, &sem_b, 1) == -1) {
fprintf(stderr, "semaphore_p failed\n");
return(0);
}
return(1);
}
/* semaphore_v is similar except for setting the sem_op part of the sembuf structure to 1,
so that the semaphore becomes available. */
static int semaphore_v(void)
{
struct sembuf sem_b;
sem_b.sem_num = 0;
sem_b.sem_op = 1; /* V() */
sem_b.sem_flg = SEM_UNDO;
if (semop(sem_id, &sem_b, 1) == -1) {
fprintf(stderr, "semaphore_v failed\n");
return(0);
}
return(1);
}