2. 内核实现
timerfd_release函数释放timerfd_create函数中申请的资源,删除已分配的定时器。
NAME top
timerfd_create, timerfd_settime, timerfd_gettime - timers that notify via file
descriptors
SYNOPSIS top
#include
int timerfd_create(int clockid, int flags);
int timerfd_settime(int fd, int flags,
const struct itimerspec *new_value,
struct itimerspec *old_value);
int timerfd_gettime(int fd, struct itimerspec *curr_value);
DESCRIPTION top
These system calls create and operate on a timer that delivers timer
expiration notifications via a file descriptor. They provide an alternative
to the use of setitimer(2) or timer_create(2), with the advantage that the
file descriptor may be monitored by select(2), poll(2), and epoll(7).
The use of these three system calls is analogous to the use of
timer_create(2), timer_settime(2), and timer_gettime(2). (There is no analog
of timer_getoverrun(2), since that functionality is provided by read(2), as
described below.)
timerfd_create()
timerfd_create() creates a new timer object, and returns a file descriptor
that refers to that timer. The clockid argument specifies the clock that is
used to mark the progress of the timer, and must be either CLOCK_REALTIME or
CLOCK_MONOTONIC. CLOCK_REALTIME is a settable system-wide clock.
CLOCK_MONOTONIC is a nonsettable clock that is not affected by discontinuous
changes in the system clock (e.g., manual changes to system time). The
current value of each of these clocks can be retrieved using clock_gettime(2).
Starting with Linux 2.6.27, the following values may be bitwise ORed in flags
to change the behavior of timerfd_create():
TFD_NONBLOCK Set the O_NONBLOCK file status flag on the new open file
description. Using this flag saves extra calls to fcntl(2) to
achieve the same result.
TFD_CLOEXEC Set the close-on-exec (FD_CLOEXEC) flag on the new file
descriptor. See the description of the O_CLOEXEC flag in
open(2) for reasons why this may be useful.
In Linux versions up to and including 2.6.26, flags must be specified as zero.
timerfd_settime()
timerfd_settime() arms (starts) or disarms (stops) the timer referred to by
the file descriptor fd.
The new_value argument specifies the initial expiration and interval for the
timer. The itimer structure used for this argument contains two fields, each
of which is in turn a structure of type timespec:
struct timespec {
time_t tv_sec; /* Seconds */
long tv_nsec; /* Nanoseconds */
};
struct itimerspec {
struct timespec it_interval; /* Interval for periodic timer */
struct timespec it_value; /* Initial expiration */
};
new_value.it_value specifies the initial expiration of the timer, in seconds
and nanoseconds. Setting either field of new_value.it_value to a nonzero
value arms the timer. Setting both fields of new_value.it_value to zero
disarms the timer.
Setting one or both fields of new_value.it_interval to nonzero values
specifies the period, in seconds and nanoseconds, for repeated timer
expirations after the initial expiration. If both fields of
new_value.it_interval are zero, the timer expires just once, at the time
specified by new_value.it_value.
The flags argument is either 0, to start a relative timer
(new_value.it_interval specifies a time relative to the current value of the
clock specified by clockid), or TFD_TIMER_ABSTIME, to start an absolute timer
(new_value.it_value specifies an absolute time for the clock specified by
clockid; that is, the timer will expire when the value of that clock reaches
the value specified in new_value.it_value).
The old_value argument returns a structure containing the setting of the timer
that was current at the time of the call; see the description of
timerfd_gettime() following.
timerfd_gettime()
timerfd_gettime() returns, in curr_value, an itimerspec structure that
contains the current setting of the timer referred to by the file descriptor
fd.
The it_value field returns the amount of time until the timer will next
expire. If both fields of this structure are zero, then the timer is
currently disarmed. This field always contains a relative value, regardless
of whether the TFD_TIMER_ABSTIME flag was specified when setting the timer.
The it_interval field returns the interval of the timer. If both fields of
this structure are zero, then the timer is set to expire just once, at the
time specified by curr_value.it_value.
Operating on a timer file descriptor
The file descriptor returned by timerfd_create() supports the following
operations:
read(2)
If the timer has already expired one or more times since its settings
were last modified using timerfd_settime(), or since the last
successful read(2), then the buffer given to read(2) returns an
unsigned 8-byte integer (uint64_t) containing the number of expirations
that have occurred. (The returned value is in host byte order, i.e.,
the native byte order for integers on the host machine.)
If no timer expirations have occurred at the time of the read(2), then
the call either blocks until the next timer expiration, or fails with
the error EAGAIN if the file descriptor has been made nonblocking (via
the use of the fcntl(2) F_SETFL operation to set the O_NONBLOCK flag).
A read(2) will fail with the error EINVAL if the size of the supplied
buffer is less than 8 bytes.
poll(2), select(2) (and similar)
The file descriptor is readable (the select(2) readfds argument; the
poll(2) POLLIN flag) if one or more timer expirations have occurred.
The file descriptor also supports the other file-descriptor
multiplexing APIs: pselect(2), ppoll(2), and epoll(7).
close(2)
When the file descriptor is no longer required it should be closed.
When all file descriptors associated with the same timer object have
been closed, the timer is disarmed and its resources are freed by the
kernel.
fork(2) semantics
After a fork(2), the child inherits a copy of the file descriptor created by
timerfd_create(). The file descriptor refers to the same underlying timer
object as the corresponding file descriptor in the parent, and read(2)s in the
child will return information about expirations of the timer.
execve(2) semantics
A file descriptor created by timerfd_create() is preserved across execve(2),
and continues to generate timer expirations if the timer was armed.
RETURN VALUE top
On success, timerfd_create() returns a new file descriptor. On error, -1 is
returned and errno is set to indicate the error.
timerfd_settime() and timerfd_gettime() return 0 on success; on error they
return -1, and set errno to indicate the error.
ERRORS top
timerfd_create() can fail with the following errors:
EINVAL The clockid argument is neither CLOCK_MONOTONIC nor CLOCK_REALTIME;
EINVAL flags is invalid; or, in Linux 2.6.26 or earlier, flags is nonzero.
EMFILE The per-process limit of open file descriptors has been reached.
ENFILE The system-wide limit on the total number of open files has been
reached.
ENODEV Could not mount (internal) anonymous inode device.
ENOMEM There was insufficient kernel memory to create the timer.
timerfd_settime() and timerfd_gettime() can fail with the following errors:
EBADF fd is not a valid file descriptor.
EFAULT new_value, old_value, or curr_value is not valid a pointer.
EINVAL fd is not a valid timerfd file descriptor.
timerfd_settime() can also fail with the following errors:
EINVAL new_value is not properly initialized (one of the tv_nsec falls outside
the range zero to 999,999,999).
EINVAL flags is invalid.
VERSIONS top
These system calls are available on Linux since kernel 2.6.25. Library
support is provided by glibc since version 2.8.
CONFORMING TO top
These system calls are Linux-specific.
EXAMPLE top
The following program creates a timer and then monitors its progress. The
program accepts up to three command-line arguments. The first argument
specifies the number of seconds for the initial expiration of the timer. The
second argument specifies the interval for the timer, in seconds. The third
argument specifies the number of times the program should allow the timer to
expire before terminating. The second and third command-line arguments are
optional.
The following shell session demonstrates the use of the program:
$ a.out 3 1 100
0.000: timer started
3.000: read: 1; total=1
4.000: read: 1; total=2
^Z # type control-Z to suspend the program
[1]+ Stopped ./timerfd3_demo 3 1 100
$ fg # Resume execution after a few seconds
a.out 3 1 100
9.660: read: 5; total=7
10.000: read: 1; total=8
11.000: read: 1; total=9
^C # type control-C to suspend the program
Program source
#include
#include
#include
#include
#include
#include /* Definition of uint64_t */
#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)
static void
print_elapsed_time(void)
{
static struct timespec start;
struct timespec curr;
static int first_call = 1;
int secs, nsecs;
if (first_call) {
first_call = 0;
if (clock_gettime(CLOCK_MONOTONIC, &start) == -1)
handle_error("clock_gettime");
}
if (clock_gettime(CLOCK_MONOTONIC, &curr) == -1)
handle_error("clock_gettime");
secs = curr.tv_sec - start.tv_sec;
nsecs = curr.tv_nsec - start.tv_nsec;
if (nsecs < 0) {
secs--;
nsecs += 1000000000;
}
printf("%d.%03d: ", secs, (nsecs + 500000) / 1000000);
}
int
main(int argc, char *argv[])
{
struct itimerspec new_value;
int max_exp, fd;
struct timespec now;
uint64_t exp, tot_exp;
ssize_t s;
if ((argc != 2) && (argc != 4)) {
fprintf(stderr, "%s init-secs [interval-secs max-exp]\n",
argv[0]);
exit(EXIT_FAILURE);
}
if (clock_gettime(CLOCK_REALTIME, &now) == -1)
handle_error("clock_gettime");
/* Create a CLOCK_REALTIME absolute timer with initial
expiration and interval as specified in command line */
new_value.it_value.tv_sec = now.tv_sec + atoi(argv[1]);
new_value.it_value.tv_nsec = now.tv_nsec;
if (argc == 2) {
new_value.it_interval.tv_sec = 0;
max_exp = 1;
} else {
new_value.it_interval.tv_sec = atoi(argv[2]);
max_exp = atoi(argv[3]);
}
new_value.it_interval.tv_nsec = 0;
fd = timerfd_create(CLOCK_REALTIME, 0);
if (fd == -1)
handle_error("timerfd_create");
if (timerfd_settime(fd, TFD_TIMER_ABSTIME, &new_value, NULL) == -1)
handle_error("timerfd_settime");
print_elapsed_time();
printf("timer started\n");
for (tot_exp = 0; tot_exp < max_exp;) {
s = read(fd, &exp, sizeof(uint64_t));
if (s != sizeof(uint64_t))
handle_error("read");
tot_exp += exp;
print_elapsed_time();
printf("read: %llu; total=%llu\n",
(unsigned long long) exp,
(unsigned long long) tot_exp);
}
exit(EXIT_SUCCESS);
}
BUGS top
Currently, timerfd_create() supports fewer types of clock IDs than
timer_create(2).
SEE ALSO top
eventfd(2), poll(2), read(2), select(2), setitimer(2), signalfd(2),
timer_create(2), timer_gettime(2), timer_settime(2), epoll(7), time(7)
COLOPHON top
This page is part of release 3.32 of the Linux man-pages project. A
description of the project, and information about reporting bugs, can be found
at http://www.kernel.org/doc/man-pages/.