- 公钥密码体系崩溃风险:Shor算法可在多项式时间内破解RSA、ECC等基于大整数分解和离散对数问题的公钥算法。4099量子位的量子计算机运行Shor算法可在10秒内破解RSA2048
百态老人
算法量子计算
基于我搜索到的资料,以下从四个维度全面分析公钥密码体系的量子威胁现状及应对策略:一、Shor算法对公钥密码体系的威胁机制算法原理与攻击效率Shor算法通过量子傅里叶变换(QFT)高效求解整数分解和离散对数问题:核心步骤包括随机数生成、模指数周期检测(f(x)=axmod Nf(x)=a^x\modNf(x)=axmodN)和量子并行计算,复杂度仅O(log3N)O(\log^3N)O(log3
- Python 执行速度慢的原因及全面优化方案
北辰alk
pythonpython开发语言
文章目录一、Python执行速度慢的深层原因1.解释型语言特性2.内存管理机制3.数据结构特性4.优化器限制二、语言层面的优化策略1.选择高效的数据结构数据结构选择指南:2.利用内置函数和库常用高效内置函数:3.减少全局变量访问三、算法与设计优化1.时间复杂度优化案例2.空间换时间策略3.延迟计算与生成器四、系统级优化方案1.使用PyPy替代CPython2.Cython混合编程3.多进程并行计算
- CUDA编程:优化GPU并行处理与内存管理
Omoo
CUDAGPU并行处理线程协作内存管理硬件限制
背景简介CUDA是NVIDIA推出的一种通用并行计算架构,它利用GPU的强大计算能力来解决复杂的计算问题。在本书的第12章中,我们深入探讨了CUDA编程的关键概念,包括线程间的协作、内存分配与管理以及如何应对硬件限制。CUDA中的线程协作与内存管理在GPU上进行编程时,我们需要处理内存分配、数据传输以及内核(kernel)的调用等任务。CUDA提供了一系列的API来帮助开发者管理这些资源。在提供的
- 20倍推理加速秘诀!揭秘批处理(Batching)的底层优化逻辑 | 附工业级调优指南
Lilith的AI星球
大模型百宝箱人工智能AIGCBatching大模型LLM
1什么是批处理?批处理(Batching)指在模型推理时一次性输入多个样本(如图像、文本序列)而非逐条处理。例如:单样本推理:输入=[样本1]→输出=[结果1]批处理推理:输入=[样本1,样本2,...,样本N]→输出=[结果1,结果2,...,结果N]关键技术价值:通过并行计算最大化硬件利用率,尤其对GPU/TPU等加速器效果显著。2批处理加速推理的三大核心原理2.1并行计算资源榨取(核心机制)
- 浏览器游戏的次世代革命:WebAssembly 3.0 实战指南
Lucas55555555
游戏wasm
破局开篇:开发者必须跨越的性能鸿沟在2025年,WebAssembly(WASM)技术已经成为高性能Web应用的核心驱动力。特别是WASM3引擎的广泛应用,使得在浏览器中实现主机级游戏画质成为可能。本文将深入探讨WASM3的关键特性、性能优势、核心代码实现以及未来的发展趋势。WASM3技术栈的性能优势WASM3技术栈在性能方面的优势主要体现在以下三个维度:1.SIMD并行计算SIMD(Single
- 《Effective Python》第九章 并发与并行——使用 concurrent.futures 实现真正的并行化
不学无术の码农
EffectivePython精读笔记python开发语言
引言本文基于**《EffectivePython:125SpecificWaystoWriteBetterPython,3rdEdition》**的第9章并发与并行中的**Item79:Considerconcurrent.futuresforTrueParallelism**,旨在总结书中关于利用Python的concurrent.futures模块实现并行计算的核心要点,结合个人实际开发中的经
- MATLAB 优化类算法的改进方向探索及仿真对比分析
鱼弦
人工智能时代算法matlab人工智能
MATLAB优化类算法的改进方向探索及仿真对比分析一、概述优化算法是解决复杂问题的有效工具,在工程设计、机器学习、数据分析等领域有着广泛应用。本文将探讨MATLAB中优化类算法的改进方向,并进行仿真对比分析,包括遗传算法、粒子群算法、模拟退火算法等。二、优化算法简介1.遗传算法(GA)原理:模拟生物进化过程,通过选择、交叉、变异等操作寻找最优解。优点:全局搜索能力强:能够跳出局部最优解。并行计算能
- 【CUDA】认识CUDA
Gappsong874
网络安全web安全黑客大数据
CUDA的作用CUDA是NVIDIA提供的一种并行计算平台和编程模型,它允许开发者通过编写程序利用GPU的强大算力完成复杂的科学运算任务。在深度学习领域中,CUDA能够显著提升神经网络训练的速度和效率CUDA安装前的准备确认系统满足CUDA的硬件和软件要求。需要NVIDIA显卡且支持CUDA,可通过NVIDIA控制面板或命令nvidia-smi查看显卡型号和驱动版本。确保操作系统为Windows、
- 【Pytorch、torchvision、CUDA 各个版本对应关系以及安装指令】
CL_Meng77
安装教程基础知识pytorch人工智能linux服务器python
Pytorch、torchvision、CUDA各个版本对应关系以及安装指令更多内容,可以移步到我的小红薯哦(复旦孟博士)1、名词解释1.1CUDACUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的用于并行计算的平台和编程模型。CUDA旨在利用NVIDIAGPU(图形处理单元)的强大计算能力来加速各种科学计算、数值模拟和深度学习任务。GPU并行计算C
- Java 并发工具类核心使用场景深度解析
液态不合群
javawindows开发语言
在Java并发编程中,java.util.concurrent(JUC)包提供的工具类是解决多线程协作、资源控制及任务调度的关键。本文聚焦同步协调、资源控制、线程协作、并行计算四大核心场景,系统解析CountDownLatch、Semaphore、CyclicBarrier等工具类的设计原理与工程实践,确保内容深度与去重性,助力面试者构建场景化知识体系。同步协调场景:线程执行节奏控制一次性任务汇总
- Java 并发工具类核心使用场景深度解析
程序员
在Java并发编程中,java.util.concurrent(JUC)包提供的工具类是解决多线程协作、资源控制及任务调度的关键。本文聚焦同步协调、资源控制、线程协作、并行计算四大核心场景,系统解析CountDownLatch、Semaphore、CyclicBarrier等工具类的设计原理与工程实践,确保内容深度与去重性,助力面试者构建场景化知识体系。同步协调场景:线程执行节奏控制一次性任务汇总
- 使用YOLO模型进行线程安全推理
alpszero
YOLO计算机视觉应用YOLOpython
概述在多线程环境中运行YOLO模型时需要特别注意线程安全问题。Pythonthreading模块允许同时运行多个线程,但在这些线程中使用YOLO模型时,需要注意一些重要的安全问题。Python线程是一种并行计算形式,允许程序同时运行多个操作。不过,Python的全局解释器锁(GIL)控制着一次只能有一个线程执行Python字节码。共享模型实例的危险在线程外实例化YOLO模型并在多个线程间共享该实例
- 云端算力革命:川翔云电脑如何重新定义创作自由
渲染101专业云渲染
电脑云计算houdiniblendermaya
在设计与科技深度融合的时代,高性能硬件的桎梏正成为创意释放的最大障碍。川翔云电脑以云端算力为支点,通过弹性算力、高效存储、多端接入三大核心优势,让顶级GPU资源触手可及。一、核心优势:突破物理极限的云端工作站弹性算力调度:提供RTX3090至48GB显存的RTX4090Plus全系列GPU配置,支持1-8卡集群并行计算。例如,八卡2080Ti机型(28元/小时)可将12小时的4K动画渲染压缩至90
- JAX革命性优势解剖:GPU/TPU自动并行计算实战
AI咸鱼保护协会
分布式算法人工智能gpu算力计算机
近年来,大模型训练与科学计算对算力的需求呈现指数级增长。传统框架面临硬件绑定深、并行编码复杂、跨平台迁移成本高三大痛点。Google开源的JAX框架通过函数式编程范式、XLA编译优化与自动并行原语,正在重塑高性能计算的技术栈。一、JAX核心优势:三位一体的技术突破1.1函数式编程+即时编译(JIT)与PyTorch/TensorFlow的面向对象范式不同,JAX强制纯函数设计:#传统PyTorch
- Python multiprocessing模块介绍
qq_27390023
python服务器人工智能
multiprocessing是Python标准库中的一个模块,用于实现多进程并行计算,可以在多核CPU上显著提升程序性能,尤其适用于CPU密集型任务。Python的多线程由于GIL(全局解释器锁)限制,在进行CPU密集型任务时无法真正实现并行。而multiprocessing模块通过创建多个子进程,每个子进程拥有独立的Python解释器,因此可以实现真正的并行运行。常用组件一览组件用途Proce
- 李晓梅老师在并行算法领域太厉害了,为什么没有评院士?
好好学习啊天天向上
算法
李晓梅老师是我国数值并行算法研究的开拓者之一。她主持了银河-I、银河-II巨型计算机应用软件的研制与开发,首次在我国建立了“并行线性代数库”、“并行特征值特征向量库”、“并行快速变换库”,研制了我国第一个“中期数值天气预报多任务并行软件系统”,在我国首次建立起向量地震数据处理软件系统等。她为银河-I/银河-II超级计算机研制和数值天气预报、核模拟、石油勘探等领域的向量化应用软件研制,及我国并行计算
- mount.lustre: /dev/sdc has not been formatted with mkfs.lustre or the backend filesystem type is not
计算机辅助工程
linux服务器运维
在Linux系统中,如果你尝试挂载一个Lustre文件系统,但遇到了/dev/sdchasnotbeenformattedwithmkfs.lustreorthebackend的错误信息,这通常意味着你的磁盘分区还没有被格式化为Lustre文件系统。Lustre是一个高性能的分布式文件系统,通常用于大规模并行计算环境中。要解决这个问题,你需要按照以下步骤操作:创建文件系统首先,你需要使用mkfs.
- Python函数式编程指南
CyMylive.
python数据库开发语言
Python是一种多范式编程语言,支持面向对象编程、函数式编程和过程式编程三种编程范式。其中函数式编程是Python的一大特色,它是一种使用函数作为基本构造块的编程范式,可以很好地支持高阶函数、闭包、惰性计算、并行计算等特性,使代码更加简洁、易读、易维护。本文将从函数式编程的基础知识、高阶函数、闭包、函数式编程中的数据类型、函数式编程中的设计模式、并行计算等方面介绍Python函数式编程的相关知识
- 大数据领域 OLAP 的分布式查询执行计划优化
大数据洞察
大数据与AI人工智能大数据分布式ai
大数据领域OLAP的分布式查询执行计划优化关键词:OLAP、分布式查询、执行计划优化、查询引擎、并行计算、数据分片、成本模型摘要:本文深入探讨了大数据环境下OLAP系统的分布式查询执行计划优化技术。文章首先介绍了OLAP查询的基本概念和特点,然后详细分析了分布式环境下查询执行计划优化的核心挑战和关键技术,包括查询重写、并行执行策略、数据本地性优化等。接着通过具体算法和数学模型阐述了优化原理,并提供
- 全面掌握MPI并行编程
鄧寜
本文还有配套的精品资源,点击获取简介:MPI(MessagePassingInterface)是并行计算领域中使用的一种标准接口,特别是在科学计算中广泛应用。本文深入讲解了MPI的基本概念,包括进程通信和进程管理的关键函数,如初始化、终止、点对点通信和集合通信等。此外,还介绍了OpenMP,一种共享内存多核系统的并行编程模型,以及如何结合MPI和OpenMP实现混合编程模式。提供了相关书籍资源,帮
- 【AI大模型】15、从GPT-1到GPT-3:大语言模型核心技术演进与能力涌现全解析
一、GPT-1:预训练微调范式的奠基者(2018)(一)架构创新:单向Transformer解码器的诞生GPT-1首次将Transformer架构应用于语言模型领域,其核心采用12层Transformer解码器,摒弃了传统RNN的递归结构,通过自注意力机制实现并行计算。与Encoder-Decoder架构不同,GPT-1仅使用解码器部分,每个解码器层包含:多头自注意力模块:8个头,每个头维度64,
- 【AI大模型】14、Transformer架构深度解析:从并行计算到千亿参数模型的扩展密码
无心水
AI大模型人工智能transformer架构AI大模型Transformer模型扩展特征工程自动化特征工程
一、Transformer的基因密码:并行化架构的革命性突破(一)序列计算的历史性突破在Transformer诞生之前,RNN/LSTM等序列模型受困于串行计算的天然缺陷:时间复杂度瓶颈:处理长度为N的序列需O(N)时间,且无法并行,导致训练速度随序列长度呈线性下降。例如,LSTM处理512长度文本需512次递归计算,而Transformer仅需一次矩阵乘法。长距离依赖困境:通过隐藏状态传递信息的
- SIMD 的使用与限制介绍
写代码的橘子n
语言模型云计算
SIMD的使用与限制介绍什么是SIMD?SIMD(SingleInstruction,MultipleData,单指令多数据流)是一种并行计算技术,允许一个指令在多组数据上同时操作。SIMD通常被用于向量化计算,以加速循环中具有相同操作的数据处理。1.SIMD的使用:Julia中支持通过@simd宏来显式提示编译器使用SIMD优化。但需要注意以下几点:基本使用在循环中添加@simd宏,可以让编译器
- 云主机与云渲染深度解析:动画制作领域的技术选择指南
AI航向标
人工智能科技3d云渲染
一、核心概念解析在数字内容创作领域,云技术正重塑着动画制作的生产流程。本文将深入解析云主机与云渲染的核心差异,并结合实际应用场景,为创作者提供高效技术选型方案。1.1技术定义对比云主机:虚拟化服务器集群,提供可弹性扩展的计算资源池,支持全栈式开发环境部署云渲染:分布式渲染架构,通过并行计算技术实现渲染任务的高效分解与执行二、技术特性对比分析2.1资源调度维度维度云主机云渲染资源形态虚拟化服务器集群
- Python并发编程:多线程与多进程实战
清水白石008
开发语言Python题库pythonpython开发语言网络
Python并发编程:多线程与多进程实战一、引言在Python编程中,并发编程是提高程序执行效率的重要技术之一。由于Python的全局解释器锁(GIL)的存在,使得多线程在CPU密集型任务上的性能提升有限,但在I/O密集型任务上仍然可以显著提高效率。另一方面,多进程编程可以绕过GIL的限制,充分利用多核CPU的并行计算能力。本文将详细介绍如何在Python中实现多线程和多进程,并通过具体示例展示其
- 大模型多显卡多服务器并行计算方法与实践指南
非著名架构师
大模型知识文档大模型集群部署大模型多卡部署大模型并行部署
一、分布式训练概述大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式:数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本模型并行:将模型分割到不同设备,每个设备处理部分模型计算现代大模型训练通常结合这两种方式,形成混合并行策略。二、硬件环境准备1.多机多卡环境配置组件要求建议配置GPU支持CUDANVIDIAA100/H100网络高速互联Inf
- 边缘AI广泛应用推动并行计算崛起及创新GPU渗透率快速提升
电子科技圈
人工智能嵌入式硬件智能硬件硬件架构物联网边缘计算图像处理
作者:ImaginationTechnologies的产品管理副总裁DennisLaudick人工智能(AI)在边缘计算领域正经历着突飞猛进的高速发展,根据IDC的最新数据,全球边缘计算支出将从2024年的2280亿美元快速增长到2028年的3780亿美元*。这种需求的增长速度,以及在智能制造、智慧城市等数十个行业中越来越多的应用场景中出现的渗透率快速提升,也为执行计算任务的硬件设计以及面对多样化
- cpu、物理核数、逻辑核数、超线程
龙卷_
操作系统Linux操作系统计算机组成原理linux
CPU核心概念总结以下为核心术语的定义、关系及在CentOS中的查看方法:一、核心概念解析术语定义关键特性CPU中央处理器(CentralProcessingUnit),计算机的运算核心物理封装在主板上的芯片(如Inteli9、AMDRyzen)。物理核数CPU芯片中独立存在的物理计算单元数量每个物理核独占计算资源(ALU、寄存器);多核实现真正并行计算。逻辑核数通过超线程(Hyper-Threa
- pycuda
贾亚飞
pycuda人工智能
一、定义1.定义2.案例3.pycuda调用c++,并在内核中执行4.接口二、实现定义PyCUDA是一个基于NVIDIACUDA的Python库,用于在GPU上进行高性能计算。它提供了与CUDAC类似的接口,可以方便地利用GPU的并行计算能力进行科学计算、机器学习、深度学习等领域的计算任务。官网教程:https://documen.tician.de/pycuda/中文教程:https://www
- 批量大数据并发处理中的内存安全与高效调度设计(以Qt为例)
我喜欢就喜欢
C++QT技术文档大数据安全qt
背景在批量处理大型文件(如高分辨率图片、视频片段、科学数据块)时,开发者通常希望利用多核CPU并行计算以提升处理效率。然而,如果每个任务对象的数据量很大,直接批量并发处理极易导致系统内存被迅速耗尽,出现程序假死、崩溃,甚至系统级“死机”。Qt自带的线程池(QThreadPool)适合并发处理大量轻量级任务,但对大文件/大数据对象的场景,若不做额外控制,任务队列/参数内存消耗同样可能压垮主机。挑战分
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag