k8s-资源指标API及自定义指标API-二十三

一、

原先版本是用heapster来收集资源指标才能看,但是现在heapster要废弃了。

从k8s v1.8开始后,引入了新的功能,即把资源指标引入api;

在使用heapster时,获取资源指标是由heapster自已获取的,heapster有自已的获取路径,没有通过apiserver,后来k8s引入了资源指标API(Metrics API),于是资源指标的数据就从k8s的api中的直接获取,不必再通过其它途径。
metrics-server: 它也是一种API Server,提供了核心的Metrics API,就像k8s组件kube-apiserver提供了很多API群组一样,但它不是k8s组成部分,而是托管运行在k8s之上的Pod。

为了让用户无缝的使用metrics-server当中的API,还需要把这类自定义的API,通过聚合器聚合到核心API组里,
然后可以把此API当作是核心API的一部分,通过kubectl api-versions可直接查看。

metrics-server收集指标数据的方式是从各节点上kubelet提供的Summary API 即10250端口收集数据,收集Node和Pod核心资源指标数据,主要是内存和cpu方面的使用情况,并将收集的信息存储在内存中,所以当通过kubectl top不能查看资源数据的历史情况,其它资源指标数据则通过prometheus采集了。

k8s中很多组件是依赖于资源指标API的功能 ,比如kubectl top 、hpa,如果没有一个资源指标API接口,这些组件是没法运行的;

资源指标:metrics-server

自定义指标: prometheus, k8s-prometheus-adapter

新一代架构:

  • 核心指标流水线:由kubelet、metrics-server以及由API server提供的api组成;cpu累计利用率、内存实时利用率、pod的资源占用率及容器的磁盘占用率;
  • 监控流水线:用于从系统收集各种指标数据并提供终端用户、存储系统以及HPA,他们包含核心指标以及许多非核心指标。非核心指标不能被k8s所解析;

metrics-server是一个api server,收集cpu利用率、内存利用率等。

二、metrics

(1)卸载上一节heapster创建的资源;

[root@master metrics]# pwd
/root/manifests/metrics

[root@master metrics]# kubectl delete -f ./
deployment.apps "monitoring-grafana" deleted
service "monitoring-grafana" deleted
clusterrolebinding.rbac.authorization.k8s.io "heapster" deleted
serviceaccount "heapster" deleted
deployment.apps "heapster" deleted
service "heapster" deleted
deployment.apps "monitoring-influxdb" deleted
service "monitoring-influxdb" deleted
pod "pod-demo" deleted

metrics-server在GitHub上有单独的项目,在kubernetes的addons里面也有关于metrics-server插件的项目yaml文件;

我们这里使用kubernetes里面的yaml:

metrics-server on kubernetes:https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/metrics-server

将以下几个文件下载出来:

k8s-资源指标API及自定义指标API-二十三_第1张图片

[root@master metrics-server]# pwd
/root/manifests/metrics/metrics-server

[root@master metrics-server]# ls
auth-delegator.yaml  auth-reader.yaml  metrics-apiservice.yaml  metrics-server-deployment.yaml  metrics-server-service.yaml  resource-reader.yaml

需要修改一些内容:

目前metrics-server的镜像版本已经升级到metrics-server-amd64:v0.3.1了,此前的版本为v0.2.1,两者的启动的参数还是有所不同的。

[root@master metrics-server]# vim resource-reader.yaml
...
...
rules:
- apiGroups:
  - ""
  resources:
  - pods
  - nodes
  - namespaces
  - nodes/stats    #添加此行
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - "extensions"
  resources:
  - deployments
...
...


[root@master metrics-server]# vim metrics-server-deployment.yaml 
...
...
containers:
      - name: metrics-server
        image: k8s.gcr.io/metrics-server-amd64:v0.3.1    #修改镜像(可以从阿里云上拉取,然后重新打标)
        command:
        - /metrics-server
        - --metric-resolution=30s
        - --kubelet-insecure-tls        ##添加此行
        - --kubelet-preferred-address-types=InternalIP,Hostname,InternalDNS,ExternalDNS,ExternalIP    #添加此行
        # These are needed for GKE, which doesn't support secure communication yet.
        # Remove these lines for non-GKE clusters, and when GKE supports token-based auth.
        #- --kubelet-port=10255
        #- --deprecated-kubelet-completely-insecure=true
        ports:
        - containerPort: 443
          name: https
          protocol: TCP
      - name: metrics-server-nanny
        image: k8s.gcr.io/addon-resizer:1.8.4    #修改镜像(可以从阿里云上拉取,然后重新打标)
        resources:
          limits:
            cpu: 100m
            memory: 300Mi
          requests:
            cpu: 5m
            memory: 50Mi
...
...
# 修改containers,metrics-server-nanny 启动参数,修改好的如下:
 volumeMounts:
        - name: metrics-server-config-volume
          mountPath: /etc/config
        command:
          - /pod_nanny
          - --config-dir=/etc/config
          - --cpu=80m
          - --extra-cpu=0.5m
          - --memory=80Mi
          - --extra-memory=8Mi
          - --threshold=5
          - --deployment=metrics-server-v0.3.1
          - --container=metrics-server
          - --poll-period=300000
          - --estimator=exponential
          # Specifies the smallest cluster (defined in number of nodes)
          # resources will be scaled to.
          #- --minClusterSize={{ metrics_server_min_cluster_size }}
...
...


#创建
[root@master metrics-server]# kubectl apply -f ./
clusterrolebinding.rbac.authorization.k8s.io/metrics-server:system:auth-delegator created
rolebinding.rbac.authorization.k8s.io/metrics-server-auth-reader created
apiservice.apiregistration.k8s.io/v1beta1.metrics.k8s.io created
serviceaccount/metrics-server created
configmap/metrics-server-config created
deployment.apps/metrics-server-v0.3.1 created
service/metrics-server created

#查看,pod已经起来了
[root@master metrics-server]# kubectl get pods -n kube-system |grep metrics-server
metrics-server-v0.3.1-7d8bf87b66-8v2w9   2/2     Running   0          9m37s
[root@master ~]# kubectl api-versions |grep metrics
metrics.k8s.io/v1beta1

[root@master ~]# kubectl top nodes
Error from server (ServiceUnavailable): the server is currently unable to handle the request (get nodes.metrics.k8s.io)

#以下为pod中两个容器的日志
[root@master ~]# kubectl logs metrics-server-v0.3.1-7d8bf87b66-8v2w9 -c metrics-server -n kube-system
I0327 07:06:47.082938       1 serving.go:273] Generated self-signed cert (apiserver.local.config/certificates/apiserver.crt, apiserver.local.config/certificates/apiserver.key)
[restful] 2019/03/27 07:06:59 log.go:33: [restful/swagger] listing is available at https://:443/swaggerapi
[restful] 2019/03/27 07:06:59 log.go:33: [restful/swagger] https://:443/swaggerui/ is mapped to folder /swagger-ui/
I0327 07:06:59.783549       1 serve.go:96] Serving securely on [::]:443

[root@master ~]# kubectl logs metrics-server-v0.3.1-7d8bf87b66-8v2w9 -c metrics-server-nanny -n kube-system
ERROR: logging before flag.Parse: I0327 07:06:40.684552       1 pod_nanny.go:65] Invoked by [/pod_nanny --config-dir=/etc/config --cpu=80m --extra-cpu=0.5m --memory=80Mi --extra-memory=8Mi --threshold=5 --deployment=metrics-server-v0.3.1 --container=metrics-server --poll-period=300000 --estimator=exponential]
ERROR: logging before flag.Parse: I0327 07:06:40.684806       1 pod_nanny.go:81] Watching namespace: kube-system, pod: metrics-server-v0.3.1-7d8bf87b66-8v2w9, container: metrics-server.
ERROR: logging before flag.Parse: I0327 07:06:40.684829       1 pod_nanny.go:82] storage: MISSING, extra_storage: 0Gi
ERROR: logging before flag.Parse: I0327 07:06:40.689926       1 pod_nanny.go:109] cpu: 80m, extra_cpu: 0.5m, memory: 80Mi, extra_memory: 8Mi
ERROR: logging before flag.Parse: I0327 07:06:40.689970       1 pod_nanny.go:138] Resources: [{Base:{i:{value:80 scale:-3} d:{Dec:} s:80m Format:DecimalSI} ExtraPerNode:{i:{value:5 scale:-4} d:{Dec:} s: Format:DecimalSI} Name:cpu} {Base:{i:{value:83886080 scale:0} d:{Dec:} s: Format:BinarySI} ExtraPerNode:{i:{value:8388608 scale:0} d:{Dec:} s: Format:BinarySI} Name:memory}]

遗憾的是,pod虽然起来了,但是依然不能获取到资源指标;

由于初学,没有什么经验,网上查了一些资料,也没有解决;

上面贴出了日志,如果哪位大佬有此类经验,还望不吝赐教!


二、prometheus

metrics只能监控cpu和内存,对于其他指标如用户自定义的监控指标,metrics就无法监控到了。这时就需要另外一个组件叫prometheus;

k8s-资源指标API及自定义指标API-二十三_第2张图片

node_exporter是agent;

PromQL相当于sql语句来查询数据;

k8s-prometheus-adapter:prometheus是不能直接解析k8s的指标的,需要借助k8s-prometheus-adapter转换成api;

kube-state-metrics是用来整合数据的;

kubernetes中prometheus的项目地址:https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/prometheus

马哥的prometheus项目地址:https://github.com/ikubernetes/k8s-prom

1、部署node_exporter

[root@master metrics]# git clone https://github.com/iKubernetes/k8s-prom.git

[root@master metrics]# cd k8s-prom/

[root@master k8s-prom]# ls
k8s-prometheus-adapter  kube-state-metrics  namespace.yaml  node_exporter  podinfo  prometheus  README.md

#创建一个叫prom的名称空间
[root@master k8s-prom]# kubectl apply -f namespace.yaml 
namespace/prom created

#部署node_exporter
[root@master k8s-prom]# cd node_exporter/

[root@master node_exporter]# ls
node-exporter-ds.yaml  node-exporter-svc.yaml

[root@master node_exporter]# kubectl apply -f ./
daemonset.apps/prometheus-node-exporter created
service/prometheus-node-exporter created

[root@master ~]# kubectl get pods -n prom
NAME                             READY   STATUS    RESTARTS   AGE
prometheus-node-exporter-5tfbz   1/1     Running   0          107s
prometheus-node-exporter-6rl8k   1/1     Running   0          107s
prometheus-node-exporter-rkx47   1/1     Running   0          107s

2、部署prometheus:

[root@master k8s-prom]# cd prometheus/

#prometheus-deploy.yaml文件中有限制使用内存的定义,如果内存不够用,可以将此规则删除;
[root@master ~]# kubectl describe pods prometheus-server-76dc8df7b-75vbp -n prom
0/3 nodes are available: 1 node(s) had taints that the pod didn't tolerate, 2 Insufficient memory.

[root@master prometheus]# kubectl apply -f ./
configmap/prometheus-config created
deployment.apps/prometheus-server created
clusterrole.rbac.authorization.k8s.io/prometheus created
serviceaccount/prometheus created
clusterrolebinding.rbac.authorization.k8s.io/prometheus created
service/prometheus created

#查看prom名称空间下,所有资源信息
[root@master ~]# kubectl get all -n prom
NAME                                     READY   STATUS    RESTARTS   AGE
pod/prometheus-node-exporter-5tfbz       1/1     Running   0          15m
pod/prometheus-node-exporter-6rl8k       1/1     Running   0          15m
pod/prometheus-node-exporter-rkx47       1/1     Running   0          15m
pod/prometheus-server-556b8896d6-cztlk   1/1     Running   0          3m5s    #pod起来了

NAME                               TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
service/prometheus                 NodePort    10.99.240.192           9090:30090/TCP   9m55s
service/prometheus-node-exporter   ClusterIP   None                    9100/TCP         15m

NAME                                      DESIRED   CURRENT   READY   UP-TO-DATE   AVAILABLE   NODE SELECTOR   AGE
daemonset.apps/prometheus-node-exporter   3         3         3       3            3                     15m

NAME                                READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/prometheus-server   1/1     1            1           3m5s

NAME                                           DESIRED   CURRENT   READY   AGE
replicaset.apps/prometheus-server-556b8896d6   1         1         1       3m5s

因为用的是NodePort,可以直接在集群外部访问:

浏览器输入:http://192.168.3.102:30090

192.168.3.102:为任意一个node节点的地址,不是master

k8s-资源指标API及自定义指标API-二十三_第3张图片

生产环境应该使用pv+pvc的方式部署;

3、部署kube-state-metrics

[root@master k8s-prom]# cd kube-state-metrics/

[root@master kube-state-metrics]# ls
kube-state-metrics-deploy.yaml  kube-state-metrics-rbac.yaml  kube-state-metrics-svc.yaml

#创建,相关镜像可以去阿里云拉取,然后打标
[root@master kube-state-metrics]# kubectl apply -f ./
deployment.apps/kube-state-metrics created
serviceaccount/kube-state-metrics created
clusterrole.rbac.authorization.k8s.io/kube-state-metrics created
clusterrolebinding.rbac.authorization.k8s.io/kube-state-metrics created
service/kube-state-metrics created

[root@master ~]# kubectl get all -n prom
NAME                                      READY   STATUS    RESTARTS   AGE
pod/kube-state-metrics-5dbf8d5979-cc2pk   1/1     Running   0          20s
pod/prometheus-node-exporter-5tfbz        1/1     Running   0          74m
pod/prometheus-node-exporter-6rl8k        1/1     Running   0          74m
pod/prometheus-node-exporter-rkx47        1/1     Running   0          74m
pod/prometheus-server-556b8896d6-qk8jc    1/1     Running   0          48m

NAME                               TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
service/kube-state-metrics         ClusterIP   10.98.0.63              8080/TCP         20s
service/prometheus                 NodePort    10.111.85.219           9090:30090/TCP   48m
service/prometheus-node-exporter   ClusterIP   None                    9100/TCP         74m

NAME                                      DESIRED   CURRENT   READY   UP-TO-DATE   AVAILABLE   NODE SELECTOR   AGE
daemonset.apps/prometheus-node-exporter   3         3         3       3            3                     74m

NAME                                 READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/kube-state-metrics   1/1     1            1           20s
deployment.apps/prometheus-server    1/1     1            1           48m

NAME                                            DESIRED   CURRENT   READY   AGE
replicaset.apps/kube-state-metrics-5dbf8d5979   1         1         1       20s
replicaset.apps/prometheus-server-556b8896d6    1         1         1       48m

4、部署k8s-prometheus-adapter

需要自制证书:

[root@master ~]# cd /etc/kubernetes/pki/

[root@master pki]# (umask 077; openssl genrsa -out serving.key 2048)
Generating RSA private key, 2048 bit long modulus
................+++
...+++
e is 65537 (0x10001)

创建:

#证书请求
[root@master pki]# openssl req -new -key serving.key -out serving.csr -subj "/CN=serving"

#签证:
[root@master pki]# openssl x509 -req -in serving.csr -CA ./ca.crt -CAkey ./ca.key -CAcreateserial -out serving.crt -days 3650
Signature ok
subject=/CN=serving
Getting CA Private Key

[root@master k8s-prometheus-adapter]# pwd
/root/manifests/metrics/k8s-prom/k8s-prometheus-adapter

[root@master k8s-prometheus-adapter]# tail -n 4 custom-metrics-apiserver-deployment.yaml 
      volumes:
      - name: volume-serving-cert
        secret:
          secretName: cm-adapter-serving-certs    #此处写了secret的名字,所以下面创建的时候要和这里一致

#创建加密的配置文件:
[root@master pki]# kubectl create secret generic cm-adapter-serving-certs --from-file=serving.crt=./serving.crt --from-file=serving.key=./serving.key -n prom
secret/cm-adapter-serving-certs created

[root@master pki]# kubectl get secrets -n prom
NAME                             TYPE                                  DATA   AGE
cm-adapter-serving-certs         Opaque                                2      23s
default-token-4jlsz              kubernetes.io/service-account-token   3      17h
kube-state-metrics-token-klc7q   kubernetes.io/service-account-token   3      16h
prometheus-token-qv598           kubernetes.io/service-account-token   3      17h

部署k8s-prometheus-adapter:

#这里需要去下载最新的custom-metrics-apiserver-deployment.yaml和custom-metrics-config-map.yaml

#先将现有目录中的文件移出去
[root@master k8s-prometheus-adapter]# mv custom-metrics-apiserver-deployment.yaml {,.bak}

#拉取两个文件
[root@master k8s-prometheus-adapter]# wget https://raw.githubusercontent.com/DirectXMan12/k8s-prometheus-adapter/master/deploy/manifests/custom-metrics-apiserver-deployment.yaml

[root@master k8s-prometheus-adapter]# wget https://raw.githubusercontent.com/DirectXMan12/k8s-prometheus-adapter/master/deploy/manifests/custom-metrics-config-map.yaml

#把两个文件里面的namespace的字段值改成prom

#创建
[root@master k8s-prometheus-adapter]# kubectl apply -f ./
clusterrolebinding.rbac.authorization.k8s.io/custom-metrics:system:auth-delegator created
rolebinding.rbac.authorization.k8s.io/custom-metrics-auth-reader created
deployment.apps/custom-metrics-apiserver created
clusterrolebinding.rbac.authorization.k8s.io/custom-metrics-resource-reader created
serviceaccount/custom-metrics-apiserver created
service/custom-metrics-apiserver created
apiservice.apiregistration.k8s.io/v1beta1.custom.metrics.k8s.io created
clusterrole.rbac.authorization.k8s.io/custom-metrics-server-resources created
configmap/adapter-config created
clusterrole.rbac.authorization.k8s.io/custom-metrics-resource-reader created
clusterrolebinding.rbac.authorization.k8s.io/hpa-controller-custom-metrics created

#查看
[root@master ~]# kubectl get all -n prom
NAME                                          READY   STATUS    RESTARTS   AGE
pod/custom-metrics-apiserver-c86bfc77-6hgjh   1/1     Running   0          50s
pod/kube-state-metrics-5dbf8d5979-cc2pk       1/1     Running   0          16h
pod/prometheus-node-exporter-5tfbz            1/1     Running   0          18h
pod/prometheus-node-exporter-6rl8k            1/1     Running   0          18h
pod/prometheus-node-exporter-rkx47            1/1     Running   0          18h
pod/prometheus-server-556b8896d6-qk8jc        1/1     Running   0          17h

NAME                               TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
service/custom-metrics-apiserver   ClusterIP   10.96.223.14            443/TCP          51s
service/kube-state-metrics         ClusterIP   10.98.0.63              8080/TCP         16h
service/prometheus                 NodePort    10.111.85.219           9090:30090/TCP   17h
service/prometheus-node-exporter   ClusterIP   None                    9100/TCP         18h

NAME                                      DESIRED   CURRENT   READY   UP-TO-DATE   AVAILABLE   NODE SELECTOR   AGE
daemonset.apps/prometheus-node-exporter   3         3         3       3            3                     18h

NAME                                       READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/custom-metrics-apiserver   1/1     1            1           53s
deployment.apps/kube-state-metrics         1/1     1            1           16h
deployment.apps/prometheus-server          1/1     1            1           17h

NAME                                                DESIRED   CURRENT   READY   AGE
replicaset.apps/custom-metrics-apiserver-c86bfc77   1         1         1       52s
replicaset.apps/kube-state-metrics-5dbf8d5979       1         1         1       16h
replicaset.apps/prometheus-server-556b8896d6        1         1         1       17h

[root@master ~]# kubectl get cm -n prom
NAME                DATA   AGE
adapter-config      1      60s
prometheus-config   1      17h

可以看到资源都起来了

#查看api
[root@master ~]# kubectl api-versions |grep custom
custom.metrics.k8s.io/v1beta1            #此项已经有了

5、prometheus和grafana整合

1、获取grafana.yaml

https://raw.githubusercontent.com/kubernetes-retired/heapster/master/deploy/kube-config/influxdb/grafana.yaml

2、修改yaml文件

[root@master metrics]# vim grafana.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: monitoring-grafana
  namespace: prom        #此处namespace改为prom
spec:
  replicas: 1
  selector:
    matchLabels:
      task: monitoring
      k8s-app: grafana

  template:
    metadata:
      labels:
        task: monitoring
        k8s-app: grafana
    spec:
      containers:
      - name: grafana
        image: angelnu/heapster-grafana:v5.0.4
        ports:
        - containerPort: 3000
          protocol: TCP
        volumeMounts:
        - mountPath: /etc/ssl/certs
          name: ca-certificates
          readOnly: true
        - mountPath: /var
          name: grafana-storage
        env:
        #- name: INFLUXDB_HOST        #注释此行
        #  value: monitoring-influxdb        #注释此行
        - name: GF_SERVER_HTTP_PORT
          value: "3000"
          # The following env variables are required to make Grafana accessible via
          # the kubernetes api-server proxy. On production clusters, we recommend
          # removing these env variables, setup auth for grafana, and expose the grafana
          # service using a LoadBalancer or a public IP.
        - name: GF_AUTH_BASIC_ENABLED
          value: "false"
        - name: GF_AUTH_ANONYMOUS_ENABLED
          value: "true"
        - name: GF_AUTH_ANONYMOUS_ORG_ROLE
          value: Admin
        - name: GF_SERVER_ROOT_URL
          # If you're only using the API Server proxy, set this value instead:
          # value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy
          value: /
      volumes:
      - name: ca-certificates
        hostPath:
          path: /etc/ssl/certs
      - name: grafana-storage
        emptyDir: {}
---
apiVersion: v1
kind: Service
metadata:
  labels:
    # For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
    # If you are NOT using this as an addon, you should comment out this line.
    kubernetes.io/cluster-service: 'true'
    kubernetes.io/name: monitoring-grafana
  name: monitoring-grafana
  namespace: prom        #此处namespace改为prom
spec:
  # In a production setup, we recommend accessing Grafana through an external Loadbalancer
  # or through a public IP.
  # type: LoadBalancer
  # You could also use NodePort to expose the service at a randomly-generated port
  # type: NodePort
  ports:
  - port: 80
    targetPort: 3000
  type: NodePort        #添加此行
  selector:
    k8s-app: grafana

3、创建grafana,整合Prometheus

[root@master metrics]# kubectl apply -f grafana.yaml 
deployment.apps/monitoring-grafana created
service/monitoring-grafana created

[root@master metrics]# kubectl get pods -n prom |grep grafana
monitoring-grafana-8549b985b6-zghcj       1/1     Running   0          108s

[root@master metrics]# kubectl get svc -n prom |grep grafana
monitoring-grafana         NodePort    10.101.124.148           80:31808/TCP     118s      #此处为NodePort,外部直接访问31808端口

grafana运行在node02上了:

[root@master pki]# kubectl get pods -n prom -o wide |grep grafana
monitoring-grafana-8549b985b6-zghcj       1/1     Running   0          27m   10.244.2.58     node02              

在外部浏览器打开:

k8s-资源指标API及自定义指标API-二十三_第4张图片

[root@master ~]# kubectl get svc -n prom -o wide |grep prometheus
prometheus                 NodePort    10.111.85.219            9090:30090/TCP   41h   app=prometheus,component=server

然后修改框住的内容:

k8s-资源指标API及自定义指标API-二十三_第5张图片

以上通过以后,点击“Dashboards”,将三个模板都导入;

k8s-资源指标API及自定义指标API-二十三_第6张图片

如下图,已经有些监控数据了:

k8s-资源指标API及自定义指标API-二十三_第7张图片

也可以去下载一些模板:

https://grafana.com/dashboards

https://grafana.com/dashboards?dataSource=prometheus&search=kubernetes

k8s-资源指标API及自定义指标API-二十三_第8张图片

k8s-资源指标API及自定义指标API-二十三_第9张图片

image

然后导入:

k8s-资源指标API及自定义指标API-二十三_第10张图片

k8s-资源指标API及自定义指标API-二十三_第11张图片

k8s-资源指标API及自定义指标API-二十三_第12张图片

k8s-资源指标API及自定义指标API-二十三_第13张图片


三、HPA(水平pod自动扩展)

(1)

Horizontal Pod Autoscaling可以根据CPU利用率(内存为不可压缩资源)自动伸缩一个Replication Controller、Deployment 或者Replica Set中的Pod数量;

目前HPA只支持两个版本,其中v1版本只支持核心指标的定义;

[root@master ~]# kubectl api-versions |grep autoscaling
autoscaling/v1
autoscaling/v2beta1
autoscaling/v2beta2

(2)下面我们用命令行的方式创建一个带有资源限制的pod

[root@master ~]# kubectl run myapp --image=ikubernetes/myapp:v1 --replicas=1 --requests='cpu=50m,memory=256Mi' --limits='cpu=50m,memory=256Mi' --labels='app=myapp' --expose --port=80
kubectl run --generator=deployment/apps.v1 is DEPRECATED and will be removed in a future version. Use kubectl run --generator=run-pod/v1 or kubectl create instead.
service/myapp created
deployment.apps/myapp created

[root@master ~]# kubectl get pods
NAME                    READY   STATUS    RESTARTS   AGE
myapp-657fb86dd-nkhhx   1/1     Running   0          56s

(3)下面我们让myapp 这个pod能自动水平扩展,用kubectl autoscale,其实就是创建HPA控制器的;

#查看帮助
[root@master ~]# kubectl autoscale -h 

#创建
[root@master ~]# kubectl autoscale deployment myapp --min=1 --max=8 --cpu-percent=60
horizontalpodautoscaler.autoscaling/myapp autoscaled

--min:表示最小扩展pod的个数  --max:表示最多扩展pod的个数 
--cpu-percent:cpu利用率

#查看hpa
[root@master ~]# kubectl get hpa
NAME    REFERENCE          TARGETS   MINPODS   MAXPODS   REPLICAS   AGE
myapp   Deployment/myapp   0%/60%    1         8         1          64s

[root@master ~]# kubectl get svc |grep myapp
myapp        ClusterIP   10.107.17.18           80/TCP    7m46s

#把service改成NodePort的方式:
[root@master ~]# kubectl patch svc myapp -p '{"spec":{"type": "NodePort"}}'
service/myapp patched

[root@master ~]# kubectl get svc |grep myapp
myapp        NodePort    10.107.17.18           80:31043/TCP   9m

接着可以对pod进行压测,看看pod会不会扩容:

#安装ab压测工具
[root@master ~]# yum -y install httpd-tools

#压测
[root@master ~]# ab -c 1000 -n 50000000 http://192.168.3.100:31043/index.html

#压测的同时,可以看到pods的cpu利用率为102%,需要扩展为2个pod了: 
[root@master ~]# kubectl describe hpa |grep -A 3 "resource cpu" 
  resource cpu on pods  (as a percentage of request):  102% (51m) / 60%
Min replicas:                                          1
Max replicas:                                          8
Deployment pods:                                       1 current / 2 desired

#已经扩展为两个pod了
[root@master ~]# kubectl get pods
NAME                    READY   STATUS    RESTARTS   AGE
myapp-657fb86dd-k4jdg   1/1     Running   0          62s
myapp-657fb86dd-nkhhx   1/1     Running   0          110m

#等压测完,cpu使用率降下来,pod数量还会自动恢复为1个,如下
[root@master ~]# kubectl describe hpa |grep -A 3 "resource cpu" 
  resource cpu on pods  (as a percentage of request):  0% (0) / 60%
Min replicas:                                          1
Max replicas:                                          8
Deployment pods:                                       1 current / 1 desired

[root@master ~]# kubectl get pods
NAME                    READY   STATUS    RESTARTS   AGE
myapp-657fb86dd-nkhhx   1/1     Running   0          116m

#但是如果cpu使用率还是一直上升,pod数量会扩展的更多

(4)hpa v2

上面用的是hpav1来做的水平pod自动扩展的功能,hpa v1版本只能根据cpu利用率括水平自动扩展pod。
接下来我们看一下hpa v2的功能,它可以根据自定义指标利用率来水平扩展pod。

#删除刚才的hpa
[root@master ~]# kubectl delete hpa myapp
horizontalpodautoscaler.autoscaling "myapp" deleted

#hpa-v2资源定义清单
[root@master hpav2]# vim hpa-v2-demo.yaml

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
  name: myapp-hpa-v2
spec:
  scaleTargetRef:        #根据什么指标来做评估压力
    apiVersion: apps/v1    #对谁来做自动扩展
    kind: Deployment
    name: myapp
  minReplicas: 1        #最少副本数量
  maxReplicas: 10        #最多副本数量
  metrics:            #表示依据哪些指标来进行评估
  - type: Resource        #表示基于资源进行评估
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 50        #pod cpu使用率超过55%,就自动水平扩展pod个数

#创建
[root@master hpav2]# kubectl apply -f hpa-v2-demo.yaml 
horizontalpodautoscaler.autoscaling/myapp-hpa-v2 created

[root@master ~]# kubectl get hpa
NAME           REFERENCE          TARGETS         MINPODS   MAXPODS   REPLICAS   AGE
myapp-hpa-v2   Deployment/myapp   /50%   1         10        0          9s

接着可以对pod进行压测,看看pod会不会扩容:

[root@master hpav2]# kubectl get pods
NAME                    READY   STATUS    RESTARTS   AGE
myapp-657fb86dd-nkhhx   1/1     Running   0          3h16m

#压测
[root@master ~]# ab -c 1000 -n 80000000 http://192.168.3.100:31043/index.html

#看到cpu使用率已经到了100%
[root@master ~]# kubectl describe hpa |grep -A 3 "resource cpu" 
  resource cpu on pods  (as a percentage of request):  100% (50m) / 50%
Min replicas:                                          1
Max replicas:                                          10
Deployment pods:                                       1 current / 2 desired

#pod已经自动扩容为两个了
[root@master hpav2]# kubectl get pods
NAME                    READY   STATUS    RESTARTS   AGE
myapp-657fb86dd-fkdxq   1/1     Running   0          27s
myapp-657fb86dd-nkhhx   1/1     Running   0          3h19m

#等压测结束后,资源使用正常一段时间后,pod个数还会收缩为正常个数;

(5)hpa v2可以根据cpu和内存使用率进行伸缩Pod个数,还可以根据其他参数进行pod处理,如http并发量

[root@master hpa]# vimt hpa-v2-custom.yaml  apiVersion: autoscaling/v2beta2   #从这可以看出是hpa v2版本
kind: HorizontalPodAutoscaler
metadata:   name: myapp-hpa-v2
spec:   scaleTargetRef:  #根据什么指标来做评估压力     apiVersion: apps/v1  #对谁来做自动扩展     kind: Deployment     name: myapp   minReplicas: 1  #最少副本数量   maxReplicas: 10   metrics:  #表示依据哪些指标来进行评估   - type: Pods  #表示基于资源进行评估     pods:        metricName: http_requests    #自定义的资源指标       targetAverageValue: 800m  #m表示个数,表示并发数800

hpa-v2版本的,有需要以后可以深入学习一下;

转载于:https://www.cnblogs.com/weiyiming007/p/10608956.html

你可能感兴趣的:(k8s-资源指标API及自定义指标API-二十三)