Nginx(二): worker 进程处理流程框架

  Nginx 启动起来之后,会有几个进程运行:1. master 进程接收用户命令并做出响应; 2. worker 进程负责处理各网络事件,并同时接收来自master的处理协调命令;

  master 主要是一控制命令,我们后面再说,而worker则是处理的nginx的核心任务,请求转发、反向代理、负载均衡等工作。所以我们先来啃啃worker这块硬骨头吧!

 

0. worker 主循环

  worker 的启动是被master 操作的,作为一个 fork 出来的进程,它拥有和master一样的内存数据信息。但它的活动范围相对较小,所以它并不会替代master的位置。

// unix/ngx_process_cycle.c
void
ngx_master_process_cycle(ngx_cycle_t *cycle)
{
    char              *title;
    u_char            *p;
    size_t             size;
    ngx_int_t          i;
    ngx_uint_t         sigio;
    sigset_t           set;
    struct itimerval   itv;
    ngx_uint_t         live;
    ngx_msec_t         delay;
    ngx_core_conf_t   *ccf;

    sigemptyset(&set);
    sigaddset(&set, SIGCHLD);
    sigaddset(&set, SIGALRM);
    sigaddset(&set, SIGIO);
    sigaddset(&set, SIGINT);
    sigaddset(&set, ngx_signal_value(NGX_RECONFIGURE_SIGNAL));
    sigaddset(&set, ngx_signal_value(NGX_REOPEN_SIGNAL));
    sigaddset(&set, ngx_signal_value(NGX_NOACCEPT_SIGNAL));
    sigaddset(&set, ngx_signal_value(NGX_TERMINATE_SIGNAL));
    sigaddset(&set, ngx_signal_value(NGX_SHUTDOWN_SIGNAL));
    sigaddset(&set, ngx_signal_value(NGX_CHANGEBIN_SIGNAL));

    if (sigprocmask(SIG_BLOCK, &set, NULL) == -1) {
        ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                      "sigprocmask() failed");
    }

    sigemptyset(&set);


    size = sizeof(master_process);

    for (i = 0; i < ngx_argc; i++) {
        size += ngx_strlen(ngx_argv[i]) + 1;
    }

    title = ngx_pnalloc(cycle->pool, size);
    if (title == NULL) {
        /* fatal */
        exit(2);
    }

    p = ngx_cpymem(title, master_process, sizeof(master_process) - 1);
    for (i = 0; i < ngx_argc; i++) {
        *p++ = ' ';
        p = ngx_cpystrn(p, (u_char *) ngx_argv[i], size);
    }

    ngx_setproctitle(title);


    ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module);
    // 启动之后会主动启动 worker 进程
    ngx_start_worker_processes(cycle, ccf->worker_processes,
                               NGX_PROCESS_RESPAWN);
    ngx_start_cache_manager_processes(cycle, 0);

    ngx_new_binary = 0;
    delay = 0;
    sigio = 0;
    live = 1;

    for ( ;; ) {
        if (delay) {
            if (ngx_sigalrm) {
                sigio = 0;
                delay *= 2;
                ngx_sigalrm = 0;
            }

            ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
                           "termination cycle: %M", delay);

            itv.it_interval.tv_sec = 0;
            itv.it_interval.tv_usec = 0;
            itv.it_value.tv_sec = delay / 1000;
            itv.it_value.tv_usec = (delay % 1000 ) * 1000;

            if (setitimer(ITIMER_REAL, &itv, NULL) == -1) {
                ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                              "setitimer() failed");
            }
        }

        ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "sigsuspend");

        sigsuspend(&set);

        ngx_time_update();

        ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
                       "wake up, sigio %i", sigio);

        if (ngx_reap) {
            ngx_reap = 0;
            ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "reap children");

            live = ngx_reap_children(cycle);
        }

        if (!live && (ngx_terminate || ngx_quit)) {
            ngx_master_process_exit(cycle);
        }

        if (ngx_terminate) {
            if (delay == 0) {
                delay = 50;
            }

            if (sigio) {
                sigio--;
                continue;
            }

            sigio = ccf->worker_processes + 2 /* cache processes */;

            if (delay > 1000) {
                ngx_signal_worker_processes(cycle, SIGKILL);
            } else {
                ngx_signal_worker_processes(cycle,
                                       ngx_signal_value(NGX_TERMINATE_SIGNAL));
            }

            continue;
        }

        if (ngx_quit) {
            ngx_signal_worker_processes(cycle,
                                        ngx_signal_value(NGX_SHUTDOWN_SIGNAL));
            ngx_close_listening_sockets(cycle);

            continue;
        }

        if (ngx_reconfigure) {
            ngx_reconfigure = 0;

            if (ngx_new_binary) {
                ngx_start_worker_processes(cycle, ccf->worker_processes,
                                           NGX_PROCESS_RESPAWN);
                ngx_start_cache_manager_processes(cycle, 0);
                ngx_noaccepting = 0;

                continue;
            }

            ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reconfiguring");

            cycle = ngx_init_cycle(cycle);
            if (cycle == NULL) {
                cycle = (ngx_cycle_t *) ngx_cycle;
                continue;
            }

            ngx_cycle = cycle;
            ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx,
                                                   ngx_core_module);
            // 收到reconfig命令时,重启worker 进程                                       
            ngx_start_worker_processes(cycle, ccf->worker_processes,
                                       NGX_PROCESS_JUST_RESPAWN);
            ngx_start_cache_manager_processes(cycle, 1);

            /* allow new processes to start */
            ngx_msleep(100);

            live = 1;
            ngx_signal_worker_processes(cycle,
                                        ngx_signal_value(NGX_SHUTDOWN_SIGNAL));
        }

        if (ngx_restart) {
            ngx_restart = 0;
            // 收到重启命令时,传递消息给 worker
            ngx_start_worker_processes(cycle, ccf->worker_processes,
                                       NGX_PROCESS_RESPAWN);
            ngx_start_cache_manager_processes(cycle, 0);
            live = 1;
        }

        if (ngx_reopen) {
            ngx_reopen = 0;
            ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs");
            ngx_reopen_files(cycle, ccf->user);
            ngx_signal_worker_processes(cycle,
                                        ngx_signal_value(NGX_REOPEN_SIGNAL));
        }

        if (ngx_change_binary) {
            ngx_change_binary = 0;
            ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "changing binary");
            ngx_new_binary = ngx_exec_new_binary(cycle, ngx_argv);
        }

        if (ngx_noaccept) {
            ngx_noaccept = 0;
            ngx_noaccepting = 1;
            ngx_signal_worker_processes(cycle,
                                        ngx_signal_value(NGX_SHUTDOWN_SIGNAL));
        }
    }
}


static void
ngx_start_worker_processes(ngx_cycle_t *cycle, ngx_int_t n, ngx_int_t type)
{
    ngx_int_t      i;
    ngx_channel_t  ch;

    ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "start worker processes");

    ngx_memzero(&ch, sizeof(ngx_channel_t));

    ch.command = NGX_CMD_OPEN_CHANNEL;
    // n 代表worker的进程数, 在 nginx.conf 中配置
    for (i = 0; i < n; i++) {
        // 依次启动 worker 进程,实际上就是通过fork进行子进程启动的
        ngx_spawn_process(cycle, ngx_worker_process_cycle,
                          (void *) (intptr_t) i, "worker process", type);

        ch.pid = ngx_processes[ngx_process_slot].pid;
        ch.slot = ngx_process_slot;
        ch.fd = ngx_processes[ngx_process_slot].channel[0];

        ngx_pass_open_channel(cycle, &ch);
    }
}

ngx_pid_t
ngx_spawn_process(ngx_cycle_t *cycle, ngx_spawn_proc_pt proc, void *data,
    char *name, ngx_int_t respawn)
{
    u_long     on;
    ngx_pid_t  pid;
    ngx_int_t  s;

    if (respawn >= 0) {
        s = respawn;

    } else {
        for (s = 0; s < ngx_last_process; s++) {
            if (ngx_processes[s].pid == -1) {
                break;
            }
        }

        if (s == NGX_MAX_PROCESSES) {
            ngx_log_error(NGX_LOG_ALERT, cycle->log, 0,
                          "no more than %d processes can be spawned",
                          NGX_MAX_PROCESSES);
            return NGX_INVALID_PID;
        }
    }


    if (respawn != NGX_PROCESS_DETACHED) {

        /* Solaris 9 still has no AF_LOCAL */

        if (socketpair(AF_UNIX, SOCK_STREAM, 0, ngx_processes[s].channel) == -1)
        {
            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                          "socketpair() failed while spawning \"%s\"", name);
            return NGX_INVALID_PID;
        }

        ngx_log_debug2(NGX_LOG_DEBUG_CORE, cycle->log, 0,
                       "channel %d:%d",
                       ngx_processes[s].channel[0],
                       ngx_processes[s].channel[1]);

        if (ngx_nonblocking(ngx_processes[s].channel[0]) == -1) {
            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                          ngx_nonblocking_n " failed while spawning \"%s\"",
                          name);
            ngx_close_channel(ngx_processes[s].channel, cycle->log);
            return NGX_INVALID_PID;
        }

        if (ngx_nonblocking(ngx_processes[s].channel[1]) == -1) {
            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                          ngx_nonblocking_n " failed while spawning \"%s\"",
                          name);
            ngx_close_channel(ngx_processes[s].channel, cycle->log);
            return NGX_INVALID_PID;
        }

        on = 1;
        if (ioctl(ngx_processes[s].channel[0], FIOASYNC, &on) == -1) {
            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                          "ioctl(FIOASYNC) failed while spawning \"%s\"", name);
            ngx_close_channel(ngx_processes[s].channel, cycle->log);
            return NGX_INVALID_PID;
        }

        if (fcntl(ngx_processes[s].channel[0], F_SETOWN, ngx_pid) == -1) {
            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                          "fcntl(F_SETOWN) failed while spawning \"%s\"", name);
            ngx_close_channel(ngx_processes[s].channel, cycle->log);
            return NGX_INVALID_PID;
        }

        if (fcntl(ngx_processes[s].channel[0], F_SETFD, FD_CLOEXEC) == -1) {
            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                          "fcntl(FD_CLOEXEC) failed while spawning \"%s\"",
                           name);
            ngx_close_channel(ngx_processes[s].channel, cycle->log);
            return NGX_INVALID_PID;
        }

        if (fcntl(ngx_processes[s].channel[1], F_SETFD, FD_CLOEXEC) == -1) {
            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                          "fcntl(FD_CLOEXEC) failed while spawning \"%s\"",
                           name);
            ngx_close_channel(ngx_processes[s].channel, cycle->log);
            return NGX_INVALID_PID;
        }

        ngx_channel = ngx_processes[s].channel[1];

    } else {
        ngx_processes[s].channel[0] = -1;
        ngx_processes[s].channel[1] = -1;
    }

    ngx_process_slot = s;

    // fork 出子进程出来
    pid = fork();

    switch (pid) {

    case -1:
        ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                      "fork() failed while spawning \"%s\"", name);
        ngx_close_channel(ngx_processes[s].channel, cycle->log);
        return NGX_INVALID_PID;

    case 0:
        ngx_parent = ngx_pid;
        ngx_pid = ngx_getpid();
        // 子进程将调用传入的处理方法,worker 则会进入循环处理事件逻辑中
        // 即 ngx_worker_process_cycle 循环
        proc(cycle, data);
        break;

    default:
        break;
    }

    ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "start %s %P", name, pid);

    ngx_processes[s].pid = pid;
    ngx_processes[s].exited = 0;

    if (respawn >= 0) {
        return pid;
    }

    ngx_processes[s].proc = proc;
    ngx_processes[s].data = data;
    ngx_processes[s].name = name;
    ngx_processes[s].exiting = 0;

    switch (respawn) {

    case NGX_PROCESS_NORESPAWN:
        ngx_processes[s].respawn = 0;
        ngx_processes[s].just_spawn = 0;
        ngx_processes[s].detached = 0;
        break;

    case NGX_PROCESS_JUST_SPAWN:
        ngx_processes[s].respawn = 0;
        ngx_processes[s].just_spawn = 1;
        ngx_processes[s].detached = 0;
        break;

    case NGX_PROCESS_RESPAWN:
        ngx_processes[s].respawn = 1;
        ngx_processes[s].just_spawn = 0;
        ngx_processes[s].detached = 0;
        break;

    case NGX_PROCESS_JUST_RESPAWN:
        ngx_processes[s].respawn = 1;
        ngx_processes[s].just_spawn = 1;
        ngx_processes[s].detached = 0;
        break;

    case NGX_PROCESS_DETACHED:
        ngx_processes[s].respawn = 0;
        ngx_processes[s].just_spawn = 0;
        ngx_processes[s].detached = 1;
        break;
    }

    if (s == ngx_last_process) {
        ngx_last_process++;
    }

    return pid;
}


// os/unix/ngx_process_cycle.c
// worker 主循环服务
static void
ngx_worker_process_cycle(ngx_cycle_t *cycle, void *data)
{
    ngx_int_t worker = (intptr_t) data;

    ngx_process = NGX_PROCESS_WORKER;
    ngx_worker = worker;

    ngx_worker_process_init(cycle, worker);
    // 进程标题 worker process
    ngx_setproctitle("worker process");
    // 死循环处理 worker 事务
    for ( ;; ) {
        // 大部分逻辑在接受 master 传递过来折命令
        if (ngx_exiting) {
            if (ngx_event_no_timers_left() == NGX_OK) {
                ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "exiting");
                ngx_worker_process_exit(cycle);
            }
        }

        ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "worker cycle");
        // 这是其核心任务,检测事件、处理事件
        ngx_process_events_and_timers(cycle);

        // 大部分逻辑在接受 master 传递过来折命令
        if (ngx_terminate) {
            ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "exiting");
            ngx_worker_process_exit(cycle);
        }
        // 退出事件
        if (ngx_quit) {
            ngx_quit = 0;
            ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0,
                          "gracefully shutting down");
            ngx_setproctitle("worker process is shutting down");

            if (!ngx_exiting) {
                ngx_exiting = 1;
                ngx_set_shutdown_timer(cycle);
                ngx_close_listening_sockets(cycle);
                ngx_close_idle_connections(cycle);
            }
        }
        // reopen 事件
        if (ngx_reopen) {
            ngx_reopen = 0;
            ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs");
            ngx_reopen_files(cycle, -1);
        }
    }
}

  上面就是nginx worker的主要功能体现, 使用一个死循环提供服务. 有很多是接口master命令进行响应的逻辑, 咱们忽略其对master命令的响应,观其业务核心: ngx_process_events_and_timers .

// event/ngx_event.c
// nginx worker 处理io事件和超时队列流程
void
ngx_process_events_and_timers(ngx_cycle_t *cycle)
{
    ngx_uint_t  flags;
    ngx_msec_t  timer, delta;

    if (ngx_timer_resolution) {
        timer = NGX_TIMER_INFINITE;
        flags = 0;

    } else {
        // 获取timer
        timer = ngx_event_find_timer();
        flags = NGX_UPDATE_TIME;

#if (NGX_WIN32)

        /* handle signals from master in case of network inactivity */

        if (timer == NGX_TIMER_INFINITE || timer > 500) {
            timer = 500;
        }

#endif
    }
    // 使用锁进行 tcp 监听
    // 该锁基于 shm 实现,多进程共享内存
    if (ngx_use_accept_mutex) {
        // disabled 用于优化监听锁竞争,直到 ngx_accept_disabled 小于0
        if (ngx_accept_disabled > 0) {
            ngx_accept_disabled--;

        } else {
            // 通过 shm 获取一个进程锁,没抢到锁则直接返回了
            // 获取到accept锁之后,其会注册 read 事件监听,所以,当其返回后,则意味着数据就绪
            if (ngx_trylock_accept_mutex(cycle) == NGX_ERROR) {
                return;
            }
            // 获取到锁,设置 flags
            if (ngx_accept_mutex_held) {
                flags |= NGX_POST_EVENTS;

            } else {
                if (timer == NGX_TIMER_INFINITE
                    || timer > ngx_accept_mutex_delay)
                {
                    timer = ngx_accept_mutex_delay;
                }
            }
        }
    }
    // post 事件队列不为空,则触发事件处理
    if (!ngx_queue_empty(&ngx_posted_next_events)) {
        ngx_event_move_posted_next(cycle);
        timer = 0;
    }

    delta = ngx_current_msec;
    // 处理事件 ngx_event_actions.process_events, 将会进行阻塞等待
    // 此处的 ngx_event_actions 由系统决定如何初始化,如 linux 下
    // 使用 event/modules/ngx_epoll_module.c 中的定义 ngx_event_actions = ngx_epoll_module_ctx.actions; 
    // 而其他系统则另外决定, 总体来说可能有以下几种可能
    // ngx_devpoll_module_ctx.actions;
    // ngx_epoll_module_ctx.actions;
    // ngx_eventport_module_ctx.actions;
    // ngx_iocp_module_ctx.actions;
    // ngx_kqueue_module_ctx.actions;
    // ngx_select_module_ctx.actions;
    // ngx_poll_module_ctx.actions;
    /**
     * 其定义样例如下: 
        static ngx_event_module_t  ngx_select_module_ctx = {
            &select_name,
            NULL,                                  /* create configuration */
            ngx_select_init_conf,                  /* init configuration */

            {
                ngx_select_add_event,              /* add an event */
                ngx_select_del_event,              /* delete an event */
                ngx_select_add_event,              /* enable an event */
                ngx_select_del_event,              /* disable an event */
                NULL,                              /* add an connection */
                NULL,                              /* delete an connection */
                NULL,                              /* trigger a notify */
                ngx_select_process_events,         /* process the events */
                ngx_select_init,                   /* init the events */
                ngx_select_done                    /* done the events */
            }

        };
    */
    (void) ngx_process_events(cycle, timer, flags);
    // 计算耗时
    delta = ngx_current_msec - delta;

    ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
                   "timer delta: %M", delta);
    // 处理 posted 事件,它存放在 ngx_posted_accept_events 队列中
    ngx_event_process_posted(cycle, &ngx_posted_accept_events);
    // 处理完事件后,释放锁
    if (ngx_accept_mutex_held) {
        ngx_shmtx_unlock(&ngx_accept_mutex);
    }
    // 处理超时的任务
    if (delta) {
        ngx_event_expire_timers();
    }
    // 读写事件将会被添加到 ngx_posted_events 队列中
    ngx_event_process_posted(cycle, &ngx_posted_events);
}

  以上也就是nginx worker的主要功能框架了:

    1. 先通过shm获取tcp的监听锁, 避免socket惊群;
    2. 获取到锁的worker进程, 将会注册accept的read事件;
    3. 如果有 ngx_posted_next_events 队列, 则先处理其队列请求;
    4. 根据系统类型调用网络io模块, select 机制接收io事件;
    5. 接入accept事件后, 释放accept锁(基于shm);
    6. 处理过期超时队列;
    7. 处理普通的已接入的socket的读写事件;

  一次处理往往只会处理部分事件, 比如可能只是处理了 accept, read 则需要在下一次或n次之后才会处理, 这也是异步机制非阻的体.

1. worker 时序图

  下面我先给到一个整个worker的工作时序图, 以便有个整体的认知.

Nginx(二): worker 进程处理流程框架_第1张图片

 

  接下来我们从几个点依次简单看看 nginx 是如何处理各细节的.

 

2. 获取accept锁及注册accept事件

  由于nginx是基于多进程实现的并发处理, 那么各进程必然都需要监听相同的端口数据, 如果没有锁控制, 则当有事件到达时, 必然导致各进程同时被唤醒, 即所谓的惊群. 所以, nginx 提供了一个锁机制, 使同一时刻只有一个进程在监听某端口, 从而避免竞争.  实现方式是基于共享内存 shm 实现.(如果是多线程方式会更简单哟)

// event/ngx_event_accept.c
ngx_int_t
ngx_trylock_accept_mutex(ngx_cycle_t *cycle)
{
    // 首先获取shm锁, 通过 shm 实现进程数据共享
    if (ngx_shmtx_trylock(&ngx_accept_mutex)) {

        ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
                       "accept mutex locked");
        // 如果上一次就是自己执行的accept操作, 则直接返回
        // 否则需要重新注册accept监听
        if (ngx_accept_mutex_held && ngx_accept_events == 0) {
            return NGX_OK;
        }
        // 注册 accept 事件
        if (ngx_enable_accept_events(cycle) == NGX_ERROR) {
            ngx_shmtx_unlock(&ngx_accept_mutex);
            return NGX_ERROR;
        }

        ngx_accept_events = 0;
        ngx_accept_mutex_held = 1;

        return NGX_OK;
    }

    ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
                   "accept mutex lock failed: %ui", ngx_accept_mutex_held);

    if (ngx_accept_mutex_held) {
        // 如果没有获取到锁,则将之前注册的 accept 事件取消,避免惊群
        if (ngx_disable_accept_events(cycle, 0) == NGX_ERROR) {
            return NGX_ERROR;
        }

        ngx_accept_mutex_held = 0;
    }
    // 不管有没有获取到锁, 都会执行后续的逻辑, 因为除了 accept 外, 还有read/write事件需要处理
    return NGX_OK;
}
// core/ngx_shmtx.c, 获取锁,锁的值为当前进程id
ngx_uint_t
ngx_shmtx_trylock(ngx_shmtx_t *mtx)
{
    return (*mtx->lock == 0 && ngx_atomic_cmp_set(mtx->lock, 0, ngx_pid));
}
// 注册 accept 事件监听
// event/ngx_event_accept.c
ngx_int_t
ngx_enable_accept_events(ngx_cycle_t *cycle)
{
    ngx_uint_t         i;
    ngx_listening_t   *ls;
    ngx_connection_t  *c;

    ls = cycle->listening.elts;
    for (i = 0; i < cycle->listening.nelts; i++) {

        c = ls[i].connection;

        if (c == NULL || c->read->active) {
            continue;
        }
        // 注册accept事件,READ ?
        // 交由 ngx_event_actions.add 处理, 实际运行由系统决定, 如 ngx_select_add_event
        if (ngx_add_event(c->read, NGX_READ_EVENT, 0) == NGX_ERROR) {
            return NGX_ERROR;
        }
    }

    return NGX_OK;
}

// event/module/ngx_select_module.c
// 注册一个 io 事件监听, fd_set
static ngx_int_t
ngx_select_add_event(ngx_event_t *ev, ngx_int_t event, ngx_uint_t flags)
{
    ngx_connection_t  *c;

    c = ev->data;

    ngx_log_debug2(NGX_LOG_DEBUG_EVENT, ev->log, 0,
                   "select add event fd:%d ev:%i", c->fd, event);

    if (ev->index != NGX_INVALID_INDEX) {
        ngx_log_error(NGX_LOG_ALERT, ev->log, 0,
                      "select event fd:%d ev:%i is already set", c->fd, event);
        return NGX_OK;
    }

    if ((event == NGX_READ_EVENT && ev->write)
        || (event == NGX_WRITE_EVENT && !ev->write))
    {
        ngx_log_error(NGX_LOG_ALERT, ev->log, 0,
                      "invalid select %s event fd:%d ev:%i",
                      ev->write ? "write" : "read", c->fd, event);
        return NGX_ERROR;
    }

    if (event == NGX_READ_EVENT) {
        FD_SET(c->fd, &master_read_fd_set);

    } else if (event == NGX_WRITE_EVENT) {
        FD_SET(c->fd, &master_write_fd_set);
    }

    if (max_fd != -1 && max_fd < c->fd) {
        max_fd = c->fd;
    }

    ev->active = 1;

    event_index[nevents] = ev;
    ev->index = nevents;
    nevents++;

    return NGX_OK;
}

  主要就是shm的应用,以及fd_set处理。

 

3. 通用处理队列实现

  在 ngx_process_events_and_timers 中, 我们看到, 在io事件返回之后, 都会多次进行队列处理. 它们的不同仅在于 队列不同. 那么, 它是如何实现这个处理过程的呢?

  我们分两块来看这事: 1. 队列的数据结构; 2. 执行队列任务; so... 就这样呗.

// 1. 队列数据结构
// 额, 两个循环嵌套的指针就是其结构了
typedef struct ngx_queue_s  ngx_queue_t;
struct ngx_queue_s {
    ngx_queue_t  *prev;
    ngx_queue_t  *next;
};
// 实际上, 此处还会有一个强制类型转换 ngx_event_t
typedef struct ngx_event_s           ngx_event_t;
struct ngx_event_s {
    void            *data;

    unsigned         write:1;

    unsigned         accept:1;

    /* used to detect the stale events in kqueue and epoll */
    unsigned         instance:1;

    /*
     * the event was passed or would be passed to a kernel;
     * in aio mode - operation was posted.
     */
    unsigned         active:1;

    unsigned         disabled:1;

    /* the ready event; in aio mode 0 means that no operation can be posted */
    unsigned         ready:1;

    unsigned         oneshot:1;

    /* aio operation is complete */
    unsigned         complete:1;

    unsigned         eof:1;
    unsigned         error:1;

    unsigned         timedout:1;
    unsigned         timer_set:1;

    unsigned         delayed:1;

    unsigned         deferred_accept:1;

    /* the pending eof reported by kqueue, epoll or in aio chain operation */
    unsigned         pending_eof:1;

    unsigned         posted:1;

    unsigned         closed:1;

    /* to test on worker exit */
    unsigned         channel:1;
    unsigned         resolver:1;

    unsigned         cancelable:1;

#if (NGX_HAVE_KQUEUE)
    unsigned         kq_vnode:1;

    /* the pending errno reported by kqueue */
    int              kq_errno;
#endif

    /*
     * kqueue only:
     *   accept:     number of sockets that wait to be accepted
     *   read:       bytes to read when event is ready
     *               or lowat when event is set with NGX_LOWAT_EVENT flag
     *   write:      available space in buffer when event is ready
     *               or lowat when event is set with NGX_LOWAT_EVENT flag
     *
     * iocp: TODO
     *
     * otherwise:
     *   accept:     1 if accept many, 0 otherwise
     *   read:       bytes to read when event is ready, -1 if not known
     */

    int              available;
    // 这个handler 比较重要, 它决定了本事件如何进行处理
    ngx_event_handler_pt  handler;


#if (NGX_HAVE_IOCP)
    ngx_event_ovlp_t ovlp;
#endif

    ngx_uint_t       index;

    ngx_log_t       *log;

    ngx_rbtree_node_t   timer;

    // queue 则是存放整个队列所有数据的地方
    /* the posted queue */
    ngx_queue_t      queue;

#if 0

    /* the threads support */

    /*
     * the event thread context, we store it here
     * if $(CC) does not understand __thread declaration
     * and pthread_getspecific() is too costly
     */

    void            *thr_ctx;

#if (NGX_EVENT_T_PADDING)

    /* event should not cross cache line in SMP */

    uint32_t         padding[NGX_EVENT_T_PADDING];
#endif
#endif
};

// 有了数据结构支持后, 要处理队列就简单了, 只需遍历数据即可    
// event/ngx_event_posted.c
void
ngx_event_process_posted(ngx_cycle_t *cycle, ngx_queue_t *posted)
{
    ngx_queue_t  *q;
    ngx_event_t  *ev;

    while (!ngx_queue_empty(posted)) {

        q = ngx_queue_head(posted);
        ev = ngx_queue_data(q, ngx_event_t, queue);

        ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
                      "posted event %p", ev);
        // 先删除事件,再进行处理, 这在单进程单线程下没有问题的哟
        ngx_delete_posted_event(ev);
        // 调用 event 对应的handler 处理事件
        // 所以核心在于这个 handler 的定义
        ev->handler(ev);
    }
}

  以上的实现, 虽然是面向过程语言写的, 但因为有 struct 数据类型的支持, 实际上也是面向对象的概念呢.

 

4. io事件的监听实现

  作为一个web服务器或者反向代理服务器, 其核心必然是网络io事件的处理. nginx 会根据不同的操作系统支持, 选择不同的io模型进行io事件的监听, 充分发挥系统的性能. 这也是其制胜之道吧. 具体如何确定哪种类型, 实际上可以在进行编译的时候, 获取系统变量来断定. (稍详细的说明, 见前面代码注释)

  我们以 select 的实现来看看细节:

// event/module/ngx_select_module.c
// io 事件监听
static ngx_int_t
ngx_select_process_events(ngx_cycle_t *cycle, ngx_msec_t timer,
    ngx_uint_t flags)
{
    int                ready, nready;
    ngx_err_t          err;
    ngx_uint_t         i, found;
    ngx_event_t       *ev;
    ngx_queue_t       *queue;
    struct timeval     tv, *tp;
    ngx_connection_t  *c;
    // 获取 max_fd, 系统传值需要
    if (max_fd == -1) {
        for (i = 0; i < nevents; i++) {
            c = event_index[i]->data;
            if (max_fd < c->fd) {
                max_fd = c->fd;
            }
        }

        ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
                       "change max_fd: %i", max_fd);
    }

#if (NGX_DEBUG)
    if (cycle->log->log_level & NGX_LOG_DEBUG_ALL) {
        for (i = 0; i < nevents; i++) {
            ev = event_index[i];
            c = ev->data;
            ngx_log_debug2(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
                           "select event: fd:%d wr:%d", c->fd, ev->write);
        }

        ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
                       "max_fd: %i", max_fd);
    }
#endif

    if (timer == NGX_TIMER_INFINITE) {
        tp = NULL;

    } else {
        tv.tv_sec = (long) (timer / 1000);
        tv.tv_usec = (long) ((timer % 1000) * 1000);
        tp = &tv;
    }

    ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
                   "select timer: %M", timer);

    work_read_fd_set = master_read_fd_set;
    work_write_fd_set = master_write_fd_set;
    // 在此处交由内核进行处理网络事件,epoll 机制,至少有一个事件到来时返回
    // tp 代表是否要超时退出
    ready = select(max_fd + 1, &work_read_fd_set, &work_write_fd_set, NULL, tp);

    err = (ready == -1) ? ngx_errno : 0;

    if (flags & NGX_UPDATE_TIME || ngx_event_timer_alarm) {
        // 事件结束后,先尝试更新gmtTime 时间信息
        ngx_time_update();
    }

    ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
                   "select ready %d", ready);

    if (err) {
        ngx_uint_t  level;

        if (err == NGX_EINTR) {

            if (ngx_event_timer_alarm) {
                ngx_event_timer_alarm = 0;
                return NGX_OK;
            }

            level = NGX_LOG_INFO;

        } else {
            level = NGX_LOG_ALERT;
        }

        ngx_log_error(level, cycle->log, err, "select() failed");

        if (err == NGX_EBADF) {
            ngx_select_repair_fd_sets(cycle);
        }

        return NGX_ERROR;
    }

    if (ready == 0) {
        if (timer != NGX_TIMER_INFINITE) {
            return NGX_OK;
        }

        ngx_log_error(NGX_LOG_ALERT, cycle->log, 0,
                      "select() returned no events without timeout");
        return NGX_ERROR;
    }

    nready = 0;
    // 遍历所有事件
    for (i = 0; i < nevents; i++) {
        ev = event_index[i];
        c = ev->data;
        found = 0;
        // 写事件处理
        if (ev->write) {
            if (FD_ISSET(c->fd, &work_write_fd_set)) {
                found = 1;
                ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
                               "select write %d", c->fd);
            }

        } 
        // 读或accept事件
        else {
            if (FD_ISSET(c->fd, &work_read_fd_set)) {
                found = 1;
                ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
                               "select read %d", c->fd);
            }
        }
        // 读写就绪事件 found 都为1
        if (found) {
            ev->ready = 1;
            ev->available = -1;
            // 如果是 accept 事件则取 ngx_posted_accept_events 队列
            // 否则取 ngx_posted_events 队列
            queue = ev->accept ? &ngx_posted_accept_events
                               : &ngx_posted_events;
            // 将事件插入到相应队列尾部
            ngx_post_event(ev, queue);
            // 有效就绪事件+1
            nready++;
        }
    }
    // 如果两个值不相等,则需要修正下
    if (ready != nready) {
        ngx_log_error(NGX_LOG_ALERT, cycle->log, 0,
                      "select ready != events: %d:%d", ready, nready);

        ngx_select_repair_fd_sets(cycle);
    }

    return NGX_OK;
}

  上面就是io事件的处理的了, 因为是 select 的实现, 所以调用系统的 select() 函数即可接收网络事件了. 具体能获取哪些事件, 实际上前面的工作已经决定了. 此处只是一个执行者的角色. 它是否高效, 则是取决于操作系统的io模型是否高效了. 有兴趣的同学可以看下 epoll 的实现.

 

5. accept 事件的处理

  当系统发现有新的网络连接进来时, 会生成一个accept的事件, 给到应用. nginx 接收到accept事件后, 会放入 ngx_posted_accept_events 中, 然后调用通用队列处理方法处理队列. 此处的 handler 是 ngx_event_accept .  其核心工作就是建立新的socket连接, 以便后续读写.

// event/ngx_event_accept.c
// accept 事件处理入口
void
ngx_event_accept(ngx_event_t *ev)
{
    socklen_t          socklen;
    ngx_err_t          err;
    ngx_log_t         *log;
    ngx_uint_t         level;
    ngx_socket_t       s;
    ngx_event_t       *rev, *wev;
    ngx_sockaddr_t     sa;
    ngx_listening_t   *ls;
    ngx_connection_t  *c, *lc;
    ngx_event_conf_t  *ecf;
#if (NGX_HAVE_ACCEPT4)
    static ngx_uint_t  use_accept4 = 1;
#endif

    if (ev->timedout) {
        if (ngx_enable_accept_events((ngx_cycle_t *) ngx_cycle) != NGX_OK) {
            return;
        }

        ev->timedout = 0;
    }
    // 获取配置信息
    ecf = ngx_event_get_conf(ngx_cycle->conf_ctx, ngx_event_core_module);

    if (!(ngx_event_flags & NGX_USE_KQUEUE_EVENT)) {
        ev->available = ecf->multi_accept;
    }

    lc = ev->data;
    ls = lc->listening;
    ev->ready = 0;

    ngx_log_debug2(NGX_LOG_DEBUG_EVENT, ev->log, 0,
                   "accept on %V, ready: %d", &ls->addr_text, ev->available);
    // 循环处理socket数据
    do {
        socklen = sizeof(ngx_sockaddr_t);

#if (NGX_HAVE_ACCEPT4)
        if (use_accept4) {
            // 调用accept() 方法接入socket连接
            s = accept4(lc->fd, &sa.sockaddr, &socklen, SOCK_NONBLOCK);
        } else {
            s = accept(lc->fd, &sa.sockaddr, &socklen);
        }
#else
        s = accept(lc->fd, &sa.sockaddr, &socklen);
#endif

        if (s == (ngx_socket_t) -1) {
            err = ngx_socket_errno;

            if (err == NGX_EAGAIN) {
                ngx_log_debug0(NGX_LOG_DEBUG_EVENT, ev->log, err,
                               "accept() not ready");
                return;
            }

            level = NGX_LOG_ALERT;

            if (err == NGX_ECONNABORTED) {
                level = NGX_LOG_ERR;

            } else if (err == NGX_EMFILE || err == NGX_ENFILE) {
                level = NGX_LOG_CRIT;
            }

#if (NGX_HAVE_ACCEPT4)
            ngx_log_error(level, ev->log, err,
                          use_accept4 ? "accept4() failed" : "accept() failed");

            if (use_accept4 && err == NGX_ENOSYS) {
                use_accept4 = 0;
                ngx_inherited_nonblocking = 0;
                continue;
            }
#else
            ngx_log_error(level, ev->log, err, "accept() failed");
#endif

            if (err == NGX_ECONNABORTED) {
                if (ngx_event_flags & NGX_USE_KQUEUE_EVENT) {
                    ev->available--;
                }

                if (ev->available) {
                    continue;
                }
            }

            if (err == NGX_EMFILE || err == NGX_ENFILE) {
                if (ngx_disable_accept_events((ngx_cycle_t *) ngx_cycle, 1)
                    != NGX_OK)
                {
                    return;
                }

                if (ngx_use_accept_mutex) {
                    if (ngx_accept_mutex_held) {
                        ngx_shmtx_unlock(&ngx_accept_mutex);
                        ngx_accept_mutex_held = 0;
                    }

                    ngx_accept_disabled = 1;

                } else {
                    ngx_add_timer(ev, ecf->accept_mutex_delay);
                }
            }

            return;
        }

#if (NGX_STAT_STUB)
        (void) ngx_atomic_fetch_add(ngx_stat_accepted, 1);
#endif

        ngx_accept_disabled = ngx_cycle->connection_n / 8
                              - ngx_cycle->free_connection_n;
        // 获取socket读写指针
        c = ngx_get_connection(s, ev->log);

        if (c == NULL) {
            if (ngx_close_socket(s) == -1) {
                ngx_log_error(NGX_LOG_ALERT, ev->log, ngx_socket_errno,
                              ngx_close_socket_n " failed");
            }

            return;
        }

        c->type = SOCK_STREAM;

#if (NGX_STAT_STUB)
        (void) ngx_atomic_fetch_add(ngx_stat_active, 1);
#endif
        // 创建内存空间
        c->pool = ngx_create_pool(ls->pool_size, ev->log);
        if (c->pool == NULL) {
            ngx_close_accepted_connection(c);
            return;
        }

        if (socklen > (socklen_t) sizeof(ngx_sockaddr_t)) {
            socklen = sizeof(ngx_sockaddr_t);
        }

        c->sockaddr = ngx_palloc(c->pool, socklen);
        if (c->sockaddr == NULL) {
            ngx_close_accepted_connection(c);
            return;
        }

        ngx_memcpy(c->sockaddr, &sa, socklen);

        log = ngx_palloc(c->pool, sizeof(ngx_log_t));
        if (log == NULL) {
            ngx_close_accepted_connection(c);
            return;
        }

        /* set a blocking mode for iocp and non-blocking mode for others */

        if (ngx_inherited_nonblocking) {
            if (ngx_event_flags & NGX_USE_IOCP_EVENT) {
                if (ngx_blocking(s) == -1) {
                    ngx_log_error(NGX_LOG_ALERT, ev->log, ngx_socket_errno,
                                  ngx_blocking_n " failed");
                    ngx_close_accepted_connection(c);
                    return;
                }
            }

        } else {
            if (!(ngx_event_flags & NGX_USE_IOCP_EVENT)) {
                if (ngx_nonblocking(s) == -1) {
                    ngx_log_error(NGX_LOG_ALERT, ev->log, ngx_socket_errno,
                                  ngx_nonblocking_n " failed");
                    ngx_close_accepted_connection(c);
                    return;
                }
            }
        }

        *log = ls->log;
        // 创建各种上下文环境给到socket连接
        c->recv = ngx_recv;
        c->send = ngx_send;
        c->recv_chain = ngx_recv_chain;
        c->send_chain = ngx_send_chain;

        c->log = log;
        c->pool->log = log;

        c->socklen = socklen;
        c->listening = ls;
        c->local_sockaddr = ls->sockaddr;
        c->local_socklen = ls->socklen;

#if (NGX_HAVE_UNIX_DOMAIN)
        if (c->sockaddr->sa_family == AF_UNIX) {
            c->tcp_nopush = NGX_TCP_NOPUSH_DISABLED;
            c->tcp_nodelay = NGX_TCP_NODELAY_DISABLED;
#if (NGX_SOLARIS)
            /* Solaris's sendfilev() supports AF_NCA, AF_INET, and AF_INET6 */
            c->sendfile = 0;
#endif
        }
#endif

        rev = c->read;
        wev = c->write;

        wev->ready = 1;

        if (ngx_event_flags & NGX_USE_IOCP_EVENT) {
            rev->ready = 1;
        }

        if (ev->deferred_accept) {
            rev->ready = 1;
#if (NGX_HAVE_KQUEUE || NGX_HAVE_EPOLLRDHUP)
            rev->available = 1;
#endif
        }

        rev->log = log;
        wev->log = log;

        /*
         * TODO: MT: - ngx_atomic_fetch_add()
         *             or protection by critical section or light mutex
         *
         * TODO: MP: - allocated in a shared memory
         *           - ngx_atomic_fetch_add()
         *             or protection by critical section or light mutex
         */

        c->number = ngx_atomic_fetch_add(ngx_connection_counter, 1);

#if (NGX_STAT_STUB)
        (void) ngx_atomic_fetch_add(ngx_stat_handled, 1);
#endif

        if (ls->addr_ntop) {
            c->addr_text.data = ngx_pnalloc(c->pool, ls->addr_text_max_len);
            if (c->addr_text.data == NULL) {
                ngx_close_accepted_connection(c);
                return;
            }

            c->addr_text.len = ngx_sock_ntop(c->sockaddr, c->socklen,
                                             c->addr_text.data,
                                             ls->addr_text_max_len, 0);
            if (c->addr_text.len == 0) {
                ngx_close_accepted_connection(c);
                return;
            }
        }

#if (NGX_DEBUG)
        {
        ngx_str_t  addr;
        u_char     text[NGX_SOCKADDR_STRLEN];

        ngx_debug_accepted_connection(ecf, c);

        if (log->log_level & NGX_LOG_DEBUG_EVENT) {
            addr.data = text;
            addr.len = ngx_sock_ntop(c->sockaddr, c->socklen, text,
                                     NGX_SOCKADDR_STRLEN, 1);

            ngx_log_debug3(NGX_LOG_DEBUG_EVENT, log, 0,
                           "*%uA accept: %V fd:%d", c->number, &addr, s);
        }

        }
#endif

        if (ngx_add_conn && (ngx_event_flags & NGX_USE_EPOLL_EVENT) == 0) {
            if (ngx_add_conn(c) == NGX_ERROR) {
                ngx_close_accepted_connection(c);
                return;
            }
        }

        log->data = NULL;
        log->handler = NULL;
        // 处理就绪的io事件,读写事件,此处将会转到 http 模块处理
        ls->handler(c);

        if (ngx_event_flags & NGX_USE_KQUEUE_EVENT) {
            ev->available--;
        }

    } while (ev->available);
}

// http/ngx_http_request.c
// 初始化socket连接, 接入 http模块
void
ngx_http_init_connection(ngx_connection_t *c)
{
    ngx_uint_t              i;
    ngx_event_t            *rev;
    struct sockaddr_in     *sin;
    ngx_http_port_t        *port;
    ngx_http_in_addr_t     *addr;
    ngx_http_log_ctx_t     *ctx;
    ngx_http_connection_t  *hc;
#if (NGX_HAVE_INET6)
    struct sockaddr_in6    *sin6;
    ngx_http_in6_addr_t    *addr6;
#endif
    // 分配数据内存
    hc = ngx_pcalloc(c->pool, sizeof(ngx_http_connection_t));
    if (hc == NULL) {
        ngx_http_close_connection(c);
        return;
    }

    c->data = hc;

    /* find the server configuration for the address:port */

    port = c->listening->servers;

    if (port->naddrs > 1) {

        /*
         * there are several addresses on this port and one of them
         * is an "*:port" wildcard so getsockname() in ngx_http_server_addr()
         * is required to determine a server address
         */

        if (ngx_connection_local_sockaddr(c, NULL, 0) != NGX_OK) {
            ngx_http_close_connection(c);
            return;
        }
        // 根据网络类型处理
        switch (c->local_sockaddr->sa_family) {

#if (NGX_HAVE_INET6)
        case AF_INET6:
            sin6 = (struct sockaddr_in6 *) c->local_sockaddr;

            addr6 = port->addrs;

            /* the last address is "*" */

            for (i = 0; i < port->naddrs - 1; i++) {
                if (ngx_memcmp(&addr6[i].addr6, &sin6->sin6_addr, 16) == 0) {
                    break;
                }
            }

            hc->addr_conf = &addr6[i].conf;

            break;
#endif

        default: /* AF_INET */
            sin = (struct sockaddr_in *) c->local_sockaddr;

            addr = port->addrs;

            /* the last address is "*" */

            for (i = 0; i < port->naddrs - 1; i++) {
                if (addr[i].addr == sin->sin_addr.s_addr) {
                    break;
                }
            }

            hc->addr_conf = &addr[i].conf;

            break;
        }

    } else {

        switch (c->local_sockaddr->sa_family) {

#if (NGX_HAVE_INET6)
        case AF_INET6:
            addr6 = port->addrs;
            hc->addr_conf = &addr6[0].conf;
            break;
#endif

        default: /* AF_INET */
            addr = port->addrs;
            hc->addr_conf = &addr[0].conf;
            break;
        }
    }

    /* the default server configuration for the address:port */
    hc->conf_ctx = hc->addr_conf->default_server->ctx;

    ctx = ngx_palloc(c->pool, sizeof(ngx_http_log_ctx_t));
    if (ctx == NULL) {
        ngx_http_close_connection(c);
        return;
    }

    ctx->connection = c;
    ctx->request = NULL;
    ctx->current_request = NULL;

    c->log->connection = c->number;
    // 每个http server 都有自己的日志记录控制
    c->log->handler = ngx_http_log_error;
    c->log->data = ctx;
    c->log->action = "waiting for request";

    c->log_error = NGX_ERROR_INFO;

    rev = c->read;
    // 设置接收数据处理器为 ngx_http_wait_request_handler
    rev->handler = ngx_http_wait_request_handler;
    c->write->handler = ngx_http_empty_handler;

#if (NGX_HTTP_V2)
    if (hc->addr_conf->http2) {
        rev->handler = ngx_http_v2_init;
    }
#endif

#if (NGX_HTTP_SSL)
    {
    ngx_http_ssl_srv_conf_t  *sscf;

    sscf = ngx_http_get_module_srv_conf(hc->conf_ctx, ngx_http_ssl_module);

    if (sscf->enable || hc->addr_conf->ssl) {
        hc->ssl = 1;
        c->log->action = "SSL handshaking";
        rev->handler = ngx_http_ssl_handshake;
    }
    }
#endif

    if (hc->addr_conf->proxy_protocol) {
        hc->proxy_protocol = 1;
        c->log->action = "reading PROXY protocol";
    }

    if (rev->ready) {
        /* the deferred accept(), iocp */

        if (ngx_use_accept_mutex) {
            ngx_post_event(rev, &ngx_posted_events);
            return;
        }

        rev->handler(rev);
        return;
    }
    // 将rev 放入到 ngx_event_timer_rbtree 队列中, 红黑树实现
    ngx_add_timer(rev, c->listening->post_accept_timeout);
    // 重用 connection
    ngx_reusable_connection(c, 1);
    // 处理 读就绪事件,注册 read 监听
    if (ngx_handle_read_event(rev, 0) != NGX_OK) {
        ngx_http_close_connection(c);
        return;
    }
}

// event/ngx_event.c
// 通用处理: 读事件逻辑
ngx_int_t
ngx_handle_read_event(ngx_event_t *rev, ngx_uint_t flags)
{
    if (ngx_event_flags & NGX_USE_CLEAR_EVENT) {

        /* kqueue, epoll */

        if (!rev->active && !rev->ready) {
            if (ngx_add_event(rev, NGX_READ_EVENT, NGX_CLEAR_EVENT)
                == NGX_ERROR)
            {
                return NGX_ERROR;
            }
        }

        return NGX_OK;

    } else if (ngx_event_flags & NGX_USE_LEVEL_EVENT) {

        /* select, poll, /dev/poll */
        if (!rev->active && !rev->ready) {
            // ngx_event_actions.add, 实际为 ngx_select_add_event
            // 注册读事件
            if (ngx_add_event(rev, NGX_READ_EVENT, NGX_LEVEL_EVENT)
                == NGX_ERROR)
            {
                return NGX_ERROR;
            }

            return NGX_OK;
        }

        if (rev->active && (rev->ready || (flags & NGX_CLOSE_EVENT))) {
            if (ngx_del_event(rev, NGX_READ_EVENT, NGX_LEVEL_EVENT | flags)
                == NGX_ERROR)
            {
                return NGX_ERROR;
            }

            return NGX_OK;
        }

    } else if (ngx_event_flags & NGX_USE_EVENTPORT_EVENT) {

        /* event ports */

        if (!rev->active && !rev->ready) {
            if (ngx_add_event(rev, NGX_READ_EVENT, 0) == NGX_ERROR) {
                return NGX_ERROR;
            }

            return NGX_OK;
        }

        if (rev->oneshot && !rev->ready) {
            if (ngx_del_event(rev, NGX_READ_EVENT, 0) == NGX_ERROR) {
                return NGX_ERROR;
            }

            return NGX_OK;
        }
    }

    /* iocp */

    return NGX_OK;
}

  大体上就是,先调用内核的accept() 方法,接入socket, 然后调用 http 模块init handler, 注册读事件, 以便后续可以读取数据。至于什么时候会进行真正地读数据请求,则不一定。

  

6. read 事件处理

  经过前面的accept处理,nginx会注册read事件,且会将handler设置为 ngx_http_wait_request_handler, 当数据就绪后,就会从 通用处理队列 的入口处,转到http处理模块处理 io 事件。

// http/ngx_http_request.c
// 处理socket读事件
static void
ngx_http_wait_request_handler(ngx_event_t *rev)
{
    u_char                    *p;
    size_t                     size;
    ssize_t                    n;
    ngx_buf_t                 *b;
    ngx_connection_t          *c;
    ngx_http_connection_t     *hc;
    ngx_http_core_srv_conf_t  *cscf;

    c = rev->data;

    ngx_log_debug0(NGX_LOG_DEBUG_HTTP, c->log, 0, "http wait request handler");

    if (rev->timedout) {
        ngx_log_error(NGX_LOG_INFO, c->log, NGX_ETIMEDOUT, "client timed out");
        ngx_http_close_connection(c);
        return;
    }

    if (c->close) {
        ngx_http_close_connection(c);
        return;
    }

    hc = c->data;
    cscf = ngx_http_get_module_srv_conf(hc->conf_ctx, ngx_http_core_module);
    // 默认1024 缓冲大小
    size = cscf->client_header_buffer_size;

    b = c->buffer;
    // 首次接入时,创建初始空间
    if (b == NULL) {
        // 创建缓冲区接收http传过来的数据
        b = ngx_create_temp_buf(c->pool, size);
        if (b == NULL) {
            ngx_http_close_connection(c);
            return;
        }

        c->buffer = b;

    } else if (b->start == NULL) {
        // 缓冲冲填满,需要另外增加空间?
        b->start = ngx_palloc(c->pool, size);
        if (b->start == NULL) {
            ngx_http_close_connection(c);
            return;
        }

        b->pos = b->start;
        b->last = b->start;
        b->end = b->last + size;
    }
    // 接收数据
    n = c->recv(c, b->last, size);

    if (n == NGX_AGAIN) {

        if (!rev->timer_set) {
            ngx_add_timer(rev, c->listening->post_accept_timeout);
            ngx_reusable_connection(c, 1);
        }

        if (ngx_handle_read_event(rev, 0) != NGX_OK) {
            ngx_http_close_connection(c);
            return;
        }

        /*
         * We are trying to not hold c->buffer's memory for an idle connection.
         */
        // 如果还要等待更多数据,释放占有空间
        if (ngx_pfree(c->pool, b->start) == NGX_OK) {
            b->start = NULL;
        }

        return;
    }

    if (n == NGX_ERROR) {
        ngx_http_close_connection(c);
        return;
    }

    if (n == 0) {
        ngx_log_error(NGX_LOG_INFO, c->log, 0,
                      "client closed connection");
        ngx_http_close_connection(c);
        return;
    }

    b->last += n;
    // 如果配置了  proxy_pass (且匹配了模式),  则直代理逻辑
    if (hc->proxy_protocol) {
        hc->proxy_protocol = 0;

        p = ngx_proxy_protocol_read(c, b->pos, b->last);

        if (p == NULL) {
            ngx_http_close_connection(c);
            return;
        }

        b->pos = p;

        if (b->pos == b->last) {
            c->log->action = "waiting for request";
            b->pos = b->start;
            b->last = b->start;
            ngx_post_event(rev, &ngx_posted_events);
            return;
        }
    }

    c->log->action = "reading client request line";
    // 设置不可重用连接
    ngx_reusable_connection(c, 0);
    // 创建 http 连接请求, 分配内存空, 设置下一个 handler 等等
    c->data = ngx_http_create_request(c);
    if (c->data == NULL) {
        ngx_http_close_connection(c);
        return;
    }
    // 设置读取数据的处理器为 ngx_http_process_request_line, 以便下次使用
    rev->handler = ngx_http_process_request_line;
    ngx_http_process_request_line(rev);
}


// http/ngx_http_request.c
// 读取body数据,并响应客户端
static void
ngx_http_process_request_line(ngx_event_t *rev)
{
    ssize_t              n;
    ngx_int_t            rc, rv;
    ngx_str_t            host;
    ngx_connection_t    *c;
    ngx_http_request_t  *r;

    c = rev->data;
    r = c->data;

    ngx_log_debug0(NGX_LOG_DEBUG_HTTP, rev->log, 0,
                   "http process request line");

    if (rev->timedout) {
        ngx_log_error(NGX_LOG_INFO, c->log, NGX_ETIMEDOUT, "client timed out");
        c->timedout = 1;
        ngx_http_close_request(r, NGX_HTTP_REQUEST_TIME_OUT);
        return;
    }

    rc = NGX_AGAIN;

    for ( ;; ) {

        if (rc == NGX_AGAIN) {
            // 读取header
            n = ngx_http_read_request_header(r);

            if (n == NGX_AGAIN || n == NGX_ERROR) {
                break;
            }
        }
        // 读取body 数据, 按照http协议解析,非常长
        rc = ngx_http_parse_request_line(r, r->header_in);

        if (rc == NGX_OK) {

            /* the request line has been parsed successfully */

            r->request_line.len = r->request_end - r->request_start;
            r->request_line.data = r->request_start;
            r->request_length = r->header_in->pos - r->request_start;

            ngx_log_debug1(NGX_LOG_DEBUG_HTTP, c->log, 0,
                           "http request line: \"%V\"", &r->request_line);

            r->method_name.len = r->method_end - r->request_start + 1;
            r->method_name.data = r->request_line.data;

            if (r->http_protocol.data) {
                r->http_protocol.len = r->request_end - r->http_protocol.data;
            }
            // 处理 uri, 解析路径
            if (ngx_http_process_request_uri(r) != NGX_OK) {
                break;
            }

            if (r->schema_end) {
                r->schema.len = r->schema_end - r->schema_start;
                r->schema.data = r->schema_start;
            }

            if (r->host_end) {

                host.len = r->host_end - r->host_start;
                host.data = r->host_start;

                rc = ngx_http_validate_host(&host, r->pool, 0);

                if (rc == NGX_DECLINED) {
                    ngx_log_error(NGX_LOG_INFO, c->log, 0,
                                  "client sent invalid host in request line");
                    ngx_http_finalize_request(r, NGX_HTTP_BAD_REQUEST);
                    break;
                }

                if (rc == NGX_ERROR) {
                    ngx_http_close_request(r, NGX_HTTP_INTERNAL_SERVER_ERROR);
                    break;
                }

                if (ngx_http_set_virtual_server(r, &host) == NGX_ERROR) {
                    break;
                }

                r->headers_in.server = host;
            }

            if (r->http_version < NGX_HTTP_VERSION_10) {

                if (r->headers_in.server.len == 0
                    && ngx_http_set_virtual_server(r, &r->headers_in.server)
                       == NGX_ERROR)
                {
                    break;
                }

                ngx_http_process_request(r);
                break;
            }


            if (ngx_list_init(&r->headers_in.headers, r->pool, 20,
                              sizeof(ngx_table_elt_t))
                != NGX_OK)
            {
                ngx_http_close_request(r, NGX_HTTP_INTERNAL_SERVER_ERROR);
                break;
            }

            c->log->action = "reading client request headers";

            rev->handler = ngx_http_process_request_headers;
            ngx_http_process_request_headers(rev);

            break;
        }

        if (rc != NGX_AGAIN) {

            /* there was error while a request line parsing */

            ngx_log_error(NGX_LOG_INFO, c->log, 0,
                          ngx_http_client_errors[rc - NGX_HTTP_CLIENT_ERROR]);

            if (rc == NGX_HTTP_PARSE_INVALID_VERSION) {
                ngx_http_finalize_request(r, NGX_HTTP_VERSION_NOT_SUPPORTED);

            } else {
                ngx_http_finalize_request(r, NGX_HTTP_BAD_REQUEST);
            }

            break;
        }

        /* NGX_AGAIN: a request line parsing is still incomplete */

        if (r->header_in->pos == r->header_in->end) {

            rv = ngx_http_alloc_large_header_buffer(r, 1);

            if (rv == NGX_ERROR) {
                ngx_http_close_request(r, NGX_HTTP_INTERNAL_SERVER_ERROR);
                break;
            }

            if (rv == NGX_DECLINED) {
                r->request_line.len = r->header_in->end - r->request_start;
                r->request_line.data = r->request_start;

                ngx_log_error(NGX_LOG_INFO, c->log, 0,
                              "client sent too long URI");
                ngx_http_finalize_request(r, NGX_HTTP_REQUEST_URI_TOO_LARGE);
                break;
            }
        }
    }
    // 处理请求, 响应客户端
    ngx_http_run_posted_requests(c);
}

// http/ngx_http_request.c
// 已经处理好的请求处理
void
ngx_http_run_posted_requests(ngx_connection_t *c)
{
    ngx_http_request_t         *r;
    ngx_http_posted_request_t  *pr;
    // 循环处理数据,直到完成
    for ( ;; ) {

        if (c->destroyed) {
            return;
        }

        r = c->data;
        pr = r->main->posted_requests;

        if (pr == NULL) {
            return;
        }

        r->main->posted_requests = pr->next;

        r = pr->request;

        ngx_http_set_log_request(c->log, r);

        ngx_log_debug2(NGX_LOG_DEBUG_HTTP, c->log, 0,
                       "http posted request: \"%V?%V\"", &r->uri, &r->args);
        // 写客户端
        r->write_event_handler(r);
    }
}

  以上就是一个简单视角的 http 请求的处理大体流程了。从中我们大概也理解了,nginx的处理逻辑,和我们想像的方案并没有太大差别,先读取url请求,判断是否特殊转发设置,读取body数据,如果没有特殊设置则定位到相应文件直接响应客户端。(具体如何响应,我们后续再说)

 

  本篇主要站在一个全局的角度,整体上理解nginx的处理请求流程,希望对大家理解nginx有一定的帮助。当然有很多的细节还未厘清,敬请期待。

你可能感兴趣的:(Nginx(二): worker 进程处理流程框架)