闲来无事,把自己平时的一些小工具整理一下,
json是coco等数据集的标注格式,要对其转换,就要先读取json中针对每张图片的数据,然后根据每张图片生成一个XML文件。
import os
import json
from lxml import etree as ET
from xml.dom import minidom
def edit_xml(objects, id, dir):
save_xml_path = os.path.join(dir, "%s.xml" % id) #加入xml,dir为加入路径
root = ET.Element("annotation")
# root.set("version", "1.0")
folder = ET.SubElement(root, "folder")
folder.text = "none"
filename = ET.SubElement(root, "filename")
filename.text = "none"
source = ET.SubElement(root, "source")
source.text = "201908"
owner = ET.SubElement(root, "owner")
owner.text = "YZN"
size = ET.SubElement(root, "size")
width = ET.SubElement(size, "width")
width.text = str(2048)
height = ET.SubElement(size, "height")
height.text = str(2048)
depth = ET.SubElement(size, "depth")
depth.text = "3"
segmented = ET.SubElement(root, "segmented")
segmented.text = "0"
for obj in objects: #
object = ET.SubElement(root, "object")
name = ET.SubElement(object, "name") # number
name.text = obj["category"]
# meaning = ET.SubElement(object, "meaning") # name
# meaning.text = inf_value[0]
pose = ET.SubElement(object, "pose")
pose.text = "Unspecified"
truncated = ET.SubElement(object, "truncated")
truncated.text = "0"
difficult = ET.SubElement(object, "difficult")
difficult.text = "0"
bndbox = ET.SubElement(object, "bndbox")
xmin = ET.SubElement(bndbox, "xmin")
xmin.text = str(int(obj["bbox"]["xmin"]))
ymin = ET.SubElement(bndbox, "ymin")
ymin.text = str(int(obj["bbox"]["ymin"]))
xmax = ET.SubElement(bndbox, "xmax")
xmax.text = str(int(obj["bbox"]["xmax"]))
ymax = ET.SubElement(bndbox, "ymax")
ymax.text = str(int(obj["bbox"]["ymax"]))
tree = ET.ElementTree(root)
tree.write(save_xml_path, encoding="UTF-8", xml_declaration=True)
root = ET.parse(save_xml_path)
file_lines = minidom.parseString(ET.tostring(root, encoding="Utf-8")).toprettyxml(
indent="\t")
file_line = open(save_xml_path, "w", encoding="utf-8")
file_line.write(file_lines)
file_line.close()
def getDirId(dir): # get the id list of id.png
names = os.listdir(dir)
ids = []
for name in names:
# path = os.path.join(dir, name)
# img = cv2.imread(path)
# w, h, c = img.shape
# if name.endswith(".jpg") or name.endswith(".png"):
# ids["%s" % name.split(".")[0]] = [w, h, c]
ids.append(name.split(".")[0])
return ids
filedir = "/media/TT100K/data/data/annotations.json"#json文件的文件路径
annos = json.loads(open(filedir).read())
trainIds = getDirId("/media/TT100K/data/data/train/")#用于训练的图片的路径,用于获取图片ID
testIds = getDirId("/media/TT100K/data/data/test/")
ids = annos["imgs"].keys() # 读取json文件中的所有图片id
for id in ids:
# json 中的ID图片,若有待检测目标,且该id图片在 train文件夹中,则生成此图片的xml文件,加入train文件中
if len(annos["imgs"][id]["objects"]) > 0 and (id in trainIds) :
objects = annos["imgs"][id]["objects"]
edit_xml(objects, id, dir="/media/TT100K/data/data/xmllabel/train")
elif len(annos["imgs"][id]["objects"]) > 0 and (id in testIds):#同上,将xml文件加入测试文件夹
objects = annos["imgs"][id]["objects"]
edit_xml(objects, id, dir="/media/TT100K/data/data/xmllabel/test")
我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:
xml是voc数据集的标注格式,txt是YOLO和大部分数据集的标注格式,在yolov3的github中提供了转换代码,代码如下:
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets=['train', 'test']
classes = ["police"]#这里输入你的数据集类别
def convert(size, box):#读取xml文件中的数据,xywh
dw = 1./size[0]
dh = 1./size[1]
x = (box[0] + box[1])/2.0
y = (box[2] + box[3])/2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
def convert_annotation(image_id):
in_file = open('police_labels/%s.xml'%(image_id))#这里是读取xml的文件夹
out_file = open('labels/%s.txt'%(image_id), 'w')#存入txt文件的文件夹
tree=ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for image_set in sets:
# if not os.path.exists('labels/'):
# os.makedirs('labels/')
image_ids = open('ImageSets/Main/%s.txt'%(image_set)).read().strip().split()#读取train.txt或者test.txt从而找到每个xml文件的文件名,这里的train.txt中仅包含文件名,不包好路径。
list_file = open('%s.txt'%(image_set), 'w')
for image_id in image_ids:
list_file.write('/root/object-detection/yolov5-master/data/police_obj/images/%s.jpg\n'%(image_id))#从写train.txt或者test.txt文件,把图片文件的绝对路径写入,方便读取图片
convert_annotation(image_id)
list_file.close()
暂时没有用到json直接转换txt文件的,有需要的看官可以先转xml,再转txt。
为了形成闭环,需要把txt格式转换为coco格式,但是由于YOLO(txt)格式没有标签名,这里先将coco(txt)转换为VOC(xml)格式。
import cv2
import os
labels = ['A', 'B', 'C'] # 数据集类别名
xml_head = '''
VOC2007
{} .
null
null
{}
{}
{}
0
'''
xml_obj = '''
'''
xml_end = '''
'''
cnt = 0
with open('train.txt', 'r') as train_list: # 训练数据train.txt或test.txt,其中包含图片路径
for lst in train_list.readlines():
lst = lst.strip()
jpg = lst # image path
txt1 = lst.replace('images', 'labels')
txt = lst.replace('.jpg', '.txt') # yolo label txt path
xml_path1 = jpg.replace('images', 'xmllabels')
xml_path = jpg.replace('.jpg', '.xml')
# xml保存路径,此时images,labels,xmllabels必须在一个文件目录下,images存放图片,labels存放txt文件。
obj = ''
img = cv2.imread(jpg)
img_h, img_w = img.shape[0], img.shape[1]
head = xml_head.format(str(jpg), str(img_w), str(img_h))
with open(txt, 'r') as f:
for line in f.readlines():
yolo_datas = line.strip().split(' ')
label = int(float(yolo_datas[0].strip()))
center_x = round(float(str(yolo_datas[1]).strip()) * img_w)
center_y = round(float(str(yolo_datas[2]).strip()) * img_h)
bbox_width = round(float(str(yolo_datas[3]).strip()) * img_w)
bbox_height = round(float(str(yolo_datas[4]).strip()) * img_h)
xmin = str(int(center_x - bbox_width / 2))
ymin = str(int(center_y - bbox_height / 2))
xmax = str(int(center_x + bbox_width / 2))
ymax = str(int(center_y + bbox_height / 2))
obj += xml_obj.format(labels[label], xmin, ymin, xmax, ymax)
with open(xml_path, 'w') as f_xml:
f_xml.write(head + obj + xml_end)
cnt += 1
print(cnt)
此时需要将xml文件和图片文件皆转入当前目录的annotations文件夹中,若没有这个文件夹,就创造一个。
import os
import glob
import json
import shutil
import numpy as np
import xml.etree.ElementTree as ET
path2 = "."#当前该文件路径
START_BOUNDING_BOX_ID = 1
def get(root, name):
return root.findall(name)
def get_and_check(root, name, length):
vars = root.findall(name)
if len(vars) == 0:
raise NotImplementedError('Can not find %s in %s.'%(name, root.tag))
if length > 0 and len(vars) != length:
raise NotImplementedError('The size of %s is supposed to be %d, but is %d.'%(name, length, len(vars)))
if length == 1:
vars = vars[0]
return vars
def convert(xml_list, json_file):
json_dict = {
"images": [], "type": "instances", "annotations": [], "categories": []}
categories = pre_define_categories.copy()
bnd_id = START_BOUNDING_BOX_ID
all_categories = {
}
for index, line in enumerate(xml_list):
# print("Processing %s"%(line))
xml_f = line
tree = ET.parse(xml_f)
root = tree.getroot()
filename = os.path.basename(xml_f)[:-4] + ".jpg"
image_id = 1 + index
size = get_and_check(root, 'size', 1)
width = int(get_and_check(size, 'width', 1).text)
height = int(get_and_check(size, 'height', 1).text)
image = {
'file_name': filename, 'height': height, 'width': width, 'id':image_id}
json_dict['images'].append(image)
## Cruuently we do not support segmentation
# segmented = get_and_check(root, 'segmented', 1).text
# assert segmented == '0'
for obj in get(root, 'object'):
category = get_and_check(obj, 'name', 1).text
if category in all_categories:
all_categories[category] += 1
else:
all_categories[category] = 1
if category not in categories:
if only_care_pre_define_categories:
continue
new_id = len(categories) + 1
print("[warning] category '{}' not in 'pre_define_categories'({}), create new id: {} automatically".format(category, pre_define_categories, new_id))
categories[category] = new_id
category_id = categories[category]
bndbox = get_and_check(obj, 'bndbox', 1)
xmin = int(float(get_and_check(bndbox, 'xmin', 1).text))
ymin = int(float(get_and_check(bndbox, 'ymin', 1).text))
xmax = int(float(get_and_check(bndbox, 'xmax', 1).text))
ymax = int(float(get_and_check(bndbox, 'ymax', 1).text))
assert(xmax > xmin), "xmax <= xmin, {}".format(line)
assert(ymax > ymin), "ymax <= ymin, {}".format(line)
o_width = abs(xmax - xmin)
o_height = abs(ymax - ymin)
ann = {
'area': o_width*o_height, 'iscrowd': 0, 'image_id':
image_id, 'bbox':[xmin, ymin, o_width, o_height],
'category_id': category_id, 'id': bnd_id, 'ignore': 0,
'segmentation': []}
json_dict['annotations'].append(ann)#将生成的json文件加入annotations文件夹
bnd_id = bnd_id + 1
for cate, cid in categories.items():
cat = {
'supercategory': 'none', 'id': cid, 'name': cate}
json_dict['categories'].append(cat)
json_fp = open(json_file, 'w')
json_str = json.dumps(json_dict)
json_fp.write(json_str)
json_fp.close()
print("------------create {} done--------------".format(json_file))
print("find {} categories: {} -->>> your pre_define_categories {}: {}".format(len(all_categories), all_categories.keys(), len(pre_define_categories), pre_define_categories.keys()))
print("category: id --> {}".format(categories))
print(categories.keys())
print(categories.values())
if __name__ == '__main__':
classes = ['person']
pre_define_categories = {
}
for i, cls in enumerate(classes):
pre_define_categories[cls] = i + 1
# pre_define_categories = {'a1': 1, 'a3': 2, 'a6': 3, 'a9': 4, "a10": 5}
only_care_pre_define_categories = True
# only_care_pre_define_categories = False
train_ratio = 1#控制train和val的比例,train_ratio=1是全部生成为train数据
save_json_train = 'instances_train2014.json'#生成训练集json文件名
save_json_val = 'instances_val2014.json'
xml_dir = "Annotations"存放xml文件的文件夹
xml_list = glob.glob(xml_dir + "/*.xml")
xml_list = np.sort(xml_list)
np.random.seed(100)
np.random.shuffle(xml_list)
train_num = int(len(xml_list)*train_ratio)
xml_list_train = xml_list[:train_num]
xml_list_val = xml_list[train_num:]
convert(xml_list_train, save_json_train)
convert(xml_list_val, save_json_val)
if os.path.exists(path2 + "/annotations"):
shutil.rmtree(path2 + "/annotations")
os.makedirs(path2 + "/annotations")
if os.path.exists(path2 + "/images/train2014"):
shutil.rmtree(path2 + "/images/train2014")
os.makedirs(path2 + "/images/train2014")
if os.path.exists(path2 + "/images/val2014"):
shutil.rmtree(path2 +"/images/val2014")
os.makedirs(path2 + "/images/val2014")
f1 = open("train.txt", "w")
for xml in xml_list_train:
img = xml[:-4] + ".jpg"#根据xml文件路径获取图片路径,此时图片和xml文件都在annotations文件夹中
f1.write(os.path.basename(xml)[:-4] + "\n")
shutil.copyfile(img, path2 + "/images/train2014/" + os.path.basename(img))#将用于训练的图片存入训练集
f2 = open("test.txt", "w")
for xml in xml_list_val:
img = xml[:-4] + ".jpg"
f2.write(os.path.basename(xml)[:-4] + "\n")
shutil.copyfile(img, path2 + "/images/val2014/" + os.path.basename(img))#将用于测试的图片存入测试集
f1.close()
f2.close()
print("-------------------------------")
print("train number:", len(xml_list_train))
print("val number:", len(xml_list_val))
mermaid语法说明 ↩︎