ictclas4j for lucene analyzer,

版权信息 : 可以任意转载, 转载时请务必以超链接形式标明文章原文出处 , 即下面的声明.

 

原文出处:http://blog.chenlb.com/2009/01/ictclas4j-for-lucene-analyzer.html

在 lucene 的中文分词域里,有好几个分词选择,有:je、paoding、IK。最近想把 ictclas 拿来做 lucene 的中文分词。网上看了下资料,觉得 ictclas4j 是比较好的选择,作者博客相关文章:http://blog.csdn.net/sinboy/category/207165.aspx  。ictclas4j 目前是0.9.1版,项目地址:http://code.google.com/p/ictclas4j/  ,下载地址:http://ictclas4j.googlecode.com/files/ictclas4j_0.9.1.rar  。

 

下载 ictclas4j 看了下源码,正找示例,org.ictclas4j.run.SegMain 可以运行。分词的核心逻辑在org.ictclas4j.segment.Segment 的 split(String src) 方法中。运行 SegMain 的结果是一串字符串(带有词性标注),细看了 Segment 与 org.ictclas4j.bean.SegResult 没看到一个个分好的词。这样就比较难以扩展成为 lucene 的分词器。555,接下还是 hack 一下。

 

hack 的突破口的它的最终结果,在 SegResult 类里的 finalResult 字段记录。 在Segment.split(String src) 生成。慢慢看代码找到 outputResult(ArrayList wrList) 方法把一个个分好的词拼凑成 string。我们可以修改这个方法把一个个分好的词收集起来。下面是 hack 的过程。

1、修改 Segment:
1)把原来的outputResult(ArrayList wrList) 复制为 outputResult(ArrayList wrList, ArrayList words) 方法,并添加收集词的内容,最后为:

	// 根据分词路径生成分词结果
	private String outputResult(ArrayList wrList, ArrayList words) {
		String result = null;
		String temp=null;
		char[] pos = new char[2];
		if (wrList != null && wrList.size() > 0) {
			result = "";
			for (int i = 0; i < wrList.size(); i++) {
				SegNode sn = wrList.get(i);
				if (sn.getPos() != POSTag.SEN_BEGIN &amp;&amp; sn.getPos() != POSTag.SEN_END) {
					int tag = Math.abs(sn.getPos());
					pos[0] = (char) (tag / 256);
					pos[1] = (char) (tag % 256);
					temp=""+pos[0];
					if(pos[1]>0)
						temp+=""+pos[1];
					result += sn.getSrcWord() + "/" + temp + " ";
					if(words != null) {	//chenlb add
						words.add(sn.getSrcWord());
					}
				}
			}
		}

		return result;
	}

2)原来的outputResult(ArrayList wrList) 改为:

	//chenlb move to outputResult(ArrayList wrList, ArrayList words)
	private String outputResult(ArrayList wrList) {
		return outputResult(wrList, null);
	}

3)修改调用outputResult(ArrayList wrList)的地方(注意不是所有的调用),大概在 Segment 的126行 String optResult = outputResult(optSegPath); 改为 String optResult = outputResult(optSegPath, words); 当然还要定义ArrayList words了,最终 Segment.split(String src) 如下:

	public SegResult split(String src) {
		SegResult sr = new SegResult(src);// 分词结果
		String finalResult = null;

		if (src != null) {
			finalResult = "";
			int index = 0;
			String midResult = null;
			sr.setRawContent(src);
			SentenceSeg ss = new SentenceSeg(src);
			ArrayList sens = ss.getSens();

			ArrayList words = new ArrayList();	//chenlb add

			for (Sentence sen : sens) {
				logger.debug(sen);
				long start=System.currentTimeMillis();
				MidResult mr = new MidResult();
				mr.setIndex(index++);
				mr.setSource(sen.getContent());
				if (sen.isSeg()) {

					// 原子分词
					AtomSeg as = new AtomSeg(sen.getContent());
					ArrayList atoms = as.getAtoms();
					mr.setAtoms(atoms);
					System.err.println("[atom time]:"+(System.currentTimeMillis()-start));
					start=System.currentTimeMillis();

					// 生成分词图表,先进行初步分词,然后进行优化,最后进行词性标记
					SegGraph segGraph = GraphGenerate.generate(atoms, coreDict);
					mr.setSegGraph(segGraph.getSnList());
					// 生成二叉分词图表
					SegGraph biSegGraph = GraphGenerate.biGenerate(segGraph, coreDict, bigramDict);
					mr.setBiSegGraph(biSegGraph.getSnList());
					System.err.println("[graph time]:"+(System.currentTimeMillis()-start));
					start=System.currentTimeMillis();

					// 求N最短路径
					NShortPath nsp = new NShortPath(biSegGraph, segPathCount);
					ArrayList> bipath = nsp.getPaths();
					mr.setBipath(bipath);
					System.err.println("[NSP time]:"+(System.currentTimeMillis()-start));
					start=System.currentTimeMillis();

					for (ArrayList onePath : bipath) {
						// 得到初次分词路径
						ArrayList segPath = getSegPath(segGraph, onePath);
						ArrayList firstPath = AdjustSeg.firstAdjust(segPath);
						String firstResult = outputResult(firstPath);
						mr.addFirstResult(firstResult);
						System.err.println("[first time]:"+(System.currentTimeMillis()-start));
						start=System.currentTimeMillis();

						// 处理未登陆词,进对初次分词结果进行优化
						SegGraph optSegGraph = new SegGraph(firstPath);
						ArrayList sns = clone(firstPath);
						personTagger.recognition(optSegGraph, sns);
						transPersonTagger.recognition(optSegGraph, sns);
						placeTagger.recognition(optSegGraph, sns);
						mr.setOptSegGraph(optSegGraph.getSnList());
						System.err.println("[unknown time]:"+(System.currentTimeMillis()-start));
						start=System.currentTimeMillis();

						// 根据优化后的结果,重新进行生成二叉分词图表
						SegGraph optBiSegGraph = GraphGenerate.biGenerate(optSegGraph, coreDict, bigramDict);
						mr.setOptBiSegGraph(optBiSegGraph.getSnList());

						// 重新求取N-最短路径
						NShortPath optNsp = new NShortPath(optBiSegGraph, segPathCount);
						ArrayList> optBipath = optNsp.getPaths();
						mr.setOptBipath(optBipath);

						// 生成优化后的分词结果,并对结果进行词性标记和最后的优化调整处理
						ArrayList adjResult = null;
						for (ArrayList optOnePath : optBipath) {
							ArrayList optSegPath = getSegPath(optSegGraph, optOnePath);
							lexTagger.recognition(optSegPath);
							String optResult = outputResult(optSegPath, words);	//chenlb changed
							mr.addOptResult(optResult);
							adjResult = AdjustSeg.finaAdjust(optSegPath, personTagger, placeTagger);
							String adjrs = outputResult(adjResult);
							System.err.println("[last time]:"+(System.currentTimeMillis()-start));
							start=System.currentTimeMillis();
							if (midResult == null)
								midResult = adjrs;
							break;
						}
					}
					sr.addMidResult(mr);
				} else {
					midResult = sen.getContent();
					words.add(midResult);	//chenlb add
				}
				finalResult += midResult;
				midResult = null;
			}

			sr.setWords(words);	//chenlb add

			sr.setFinalResult(finalResult);
			DebugUtil.output2html(sr);
			logger.info(finalResult);
		}

		return sr;
	}

4)Segment中的构造方法,词典路径分隔可以改为"/"

5)同时修改了一个漏词的 bug,请看:ictclas4j的一个bug

2、修改 SegResult:
添加以下内容:

private ArrayList words;	//记录分词后的词结果,chenlb add
	/**
	 * 添加词条。
	 * @param word null 不添加
	 * @author chenlb 2009-1-21 下午05:01:25
	 */
	public void addWord(String word) {
		if(words == null) {
			words = new ArrayList();
		}
		if(word != null) {
			words.add(word);
		}
	}

	public ArrayList getWords() {
		return words;
	}

	public void setWords(ArrayList words) {
		this.words = words;
	}

下面是创建 ictclas4j 的 lucene analyzer
1、新建一个ICTCLAS4jTokenizer类:

package com.chenlb.analysis.ictclas4j;

import java.io.IOException;
import java.io.Reader;
import java.util.ArrayList;

import org.apache.lucene.analysis.Token;
import org.apache.lucene.analysis.Tokenizer;
import org.ictclas4j.bean.SegResult;
import org.ictclas4j.segment.Segment;

/**
 * ictclas4j 切词
 *
 * @author chenlb 2009-1-23 上午11:39:10
 */
public class ICTCLAS4jTokenizer extends Tokenizer {

	private static Segment segment;

	private StringBuilder sb = new StringBuilder();

	private ArrayList words;

	private int startOffest = 0;
	private int length = 0;
	private int wordIdx = 0;

	public ICTCLAS4jTokenizer() {
		words = new ArrayList();
	}

	public ICTCLAS4jTokenizer(Reader input) {
		super(input);
		char[] buf = new char[8192];
		int d = -1;
		try {
			while((d=input.read(buf)) != -1) {
				sb.append(buf, 0, d);
			}
		} catch (IOException e) {
			e.printStackTrace();
		}
		SegResult sr = seg().split(sb.toString());	//分词
		words = sr.getWords();
	}

	public Token next(Token reusableToken) throws IOException {
		assert reusableToken != null;

		length = 0;
		Token token = null;
		if(wordIdx < words.size()) {
			String word = words.get(wordIdx);
			length = word.length();
			token = reusableToken.reinit(word, startOffest, startOffest+length);
			wordIdx++;
			startOffest += length;

		}

		return token;
	}

	private static Segment seg() {
		if(segment == null) {
			segment = new Segment(1);
		}
		return segment;
	}
}

2、新建一个ICTCLAS4jFilter类:

package com.chenlb.analysis.ictclas4j;

import org.apache.lucene.analysis.Token;
import org.apache.lucene.analysis.TokenFilter;
import org.apache.lucene.analysis.TokenStream;

/**
 * 标点符等, 过虑.
 *
 * @author chenlb 2009-1-23 下午03:06:00
 */
public class ICTCLAS4jFilter extends TokenFilter {

	protected ICTCLAS4jFilter(TokenStream input) {
		super(input);
	}

    public final Token next(final Token reusableToken) throws java.io.IOException {
        assert reusableToken != null;

        for (Token nextToken = input.next(reusableToken); nextToken != null; nextToken = input.next(reusableToken)) {
            String text = nextToken.term();

                switch (Character.getType(text.charAt(0))) {

                case Character.LOWERCASE_LETTER:
                case Character.UPPERCASE_LETTER:

                    // English word/token should larger than 1 character.
                    if (text.length()>1) {
                        return nextToken;
                    }
                    break;
                case Character.DECIMAL_DIGIT_NUMBER:
                case Character.OTHER_LETTER:

                    // One Chinese character as one Chinese word.
                    // Chinese word extraction to be added later here.

                    return nextToken;
                }

        }
        return null;
    }
}

3、新建一个ICTCLAS4jAnalyzer类:

package com.chenlb.analysis.ictclas4j;

import java.io.Reader;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.LowerCaseFilter;
import org.apache.lucene.analysis.StopFilter;
import org.apache.lucene.analysis.TokenStream;

/**
 * ictclas4j 的 lucene 分析器
 *
 * @author chenlb 2009-1-23 上午11:39:39
 */
public class ICTCLAS4jAnalyzer extends Analyzer {

	private static final long serialVersionUID = 1L;

	// 可以自定义添加更多的过虑的词(高频无多太用处的词)
	private static final String[] STOP_WORDS = {
		"and", "are", "as", "at", "be", "but", "by",
	    "for", "if", "in", "into", "is", "it",
	    "no", "not", "of", "on", "or", "such",
	    "that", "the", "their", "then", "there", "these",
	    "they", "this", "to", "was", "will", "with",
	    "的"
	};

	public TokenStream tokenStream(String fieldName, Reader reader) {
		TokenStream result = new ICTCLAS4jTokenizer(reader);
		result = new ICTCLAS4jFilter(new StopFilter(new LowerCaseFilter(result), STOP_WORDS));
		return result;
	}

}

下面来测试下分词效果:
文本内容:

京华时报1月23日报道 昨天,受一股来自中西伯利亚的强冷空气影响,本市出现大风降温天气,白天最高气温只有零下7摄氏度,同时伴有6到7级的偏北风。

原分词结果:

京华/nz 时/ng 报/v 1月/t 23日/t 报道/v  昨天/t ,/w 受/v 一/m 股/q 来自/v 中/f 西伯利亚/ns 的/u 强/a 冷空气/n 影响/vn ,/w 本市/r 出现/v 大风/n 降温/vn 天气/n ,/w 白天/t 最高/a 气温/n 只/d 有/v 零下/s 7/m 摄氏度/q ,/w 同时/c 伴/v 有/v 6/m 到/v 7/m 级/q 的/u 偏/a 北风/n 。/w 

analyzer:

[京华] [时] [报] [1月] [23日] [报道] [昨天] [受] [一] [股] [来自] [中] [西伯利亚] [强] [冷空气] [影响] [本市] [出现] [大风] [降温] [天气] [白天] [最高] [气温] [只] [有] [零下] [7] [摄氏度] [同时] [伴] [有] [6] [到] [7] [级] [偏] [北风]

我改过的源码可以下载:ictclas4j-091-for-lucene-src

依赖的jar:commons-lang-2.1.jar,log4j-1.2.12.jar,lucene-core-2.4.jar

你可能感兴趣的:(关于分词,java)