直接通过Spring 官方提供的 Spring Initializr 创建或者直接使用 IDEA 创建皆可。
通过 application.yml 配置文件配置 Kafka 基本信息
server:
port: 9090
spring:
kafka:
consumer:
bootstrap-servers: localhost:9092
# 配置消费者消息offset是否自动重置(消费者重连会能够接收最开始的消息)
auto-offset-reset: earliest
producer:
bootstrap-servers: localhost:9092
# 发送的对象信息变为json格式
value-serializer: org.springframework.kafka.support.serializer.JsonSerializer
kafka:
topic:
my-topic: my-topic
my-topic2: my-topic2
Kafka 额外配置类:
package cn.javaguide.springbootkafka01sendobjects.config;
import org.apache.kafka.clients.admin.NewTopic;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.support.converter.RecordMessageConverter;
import org.springframework.kafka.support.converter.StringJsonMessageConverter;
@Configuration
public class KafkaConfig {
@Value("${kafka.topic.my-topic}")
String myTopic;
@Value("${kafka.topic.my-topic2}")
String myTopic2;
/**
* JSON消息转换器
*/
@Bean
public RecordMessageConverter jsonConverter() {
return new StringJsonMessageConverter();
}
/**
* 通过注入一个 NewTopic 类型的 Bean 来创建 topic,如果 topic 已存在,则会忽略。
*/
@Bean
public NewTopic myTopic() {
return new NewTopic(myTopic, 2, (short) 1);
}
@Bean
public NewTopic myTopic2() {
return new NewTopic(myTopic2, 1, (short) 1);
}
}
当我们到了这一步之后,你就可以试着运行项目了,运行成功后你会发现 Spring Boot 会为你创建两个topic:
“通过上一节说的:
”kafka-topics --describe --zookeeper zoo1:2181
命令查看或者直接通过IDEA 提供的 Kafka 可视化管理插件-Kafkalytic 来查看
package cn.javaguide.springbootkafka01sendobjects.entity;
public class Book {
private Long id;
private String name;
public Book() {
}
public Book(Long id, String name) {
this.id = id;
this.name = name;
}
省略 getter/setter以及 toString方法
}
“这一步内容比较长,会一步一步优化生产者的代码。
”
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Service;
@Service
public class BookProducerService {
private static final Logger logger = LoggerFactory.getLogger(BookProducerService.class);
private final KafkaTemplate kafkaTemplate;
public BookProducerService(KafkaTemplate kafkaTemplate) {
this.kafkaTemplate = kafkaTemplate;
}
public void sendMessage(String topic, Object o) {
kafkaTemplate.send(topic, o);
}
}
我们使用Kafka 提供的 KafkaTemplate
调用 send()
方法出入要发往的topic和消息内容即可很方便的完成消息的发送:
kafkaTemplate.send(topic, o);
如果我们想要知道消息发送的结果的话,sendMessage
方法这样写:
public void sendMessage(String topic, Object o) {
try {
SendResult sendResult = kafkaTemplate.send(topic, o).get();
if (sendResult.getRecordMetadata() != null) {
logger.info("生产者成功发送消息到" + sendResult.getProducerRecord().topic() + "-> " + sendResult.getProducerRecord().value().toString());
}
} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();
}
}
但是这种属于同步的发送方式并不推荐,没有利用到 Future
对象的特性。
KafkaTemplate
调用 send()
方法实际上返回的是ListenableFuture
对象。
send()
方法源码如下:
@Override
public ListenableFuture> send(String topic, @Nullable V data) {
ProducerRecord producerRecord = new ProducerRecord<>(topic, data);
return doSend(producerRecord);
}
ListenableFuture
是Spring提供了继承自Future
的接口。
ListenableFuture
方法源码如下:
public interface ListenableFuture extends Future {
void addCallback(ListenableFutureCallback super T> var1);
void addCallback(SuccessCallback super T> var1, FailureCallback var2);
default CompletableFuture completable() {
CompletableFuture completable = new DelegatingCompletableFuture(this);
this.addCallback(completable::complete, completable::completeExceptionally);
return completable;
}
}
继续优化sendMessage
方法
public void sendMessage(String topic, Object o) {
ListenableFuture> future = kafkaTemplate.send(topic, o);
future.addCallback(new ListenableFutureCallback>() {
@Override
public void onSuccess(SendResult sendResult) {
logger.info("生产者成功发送消息到" + topic + "-> " + sendResult.getProducerRecord().value().toString());
}
@Override
public void onFailure(Throwable throwable) {
logger.error("生产者发送消息:{} 失败,原因:{}", o.toString(), throwable.getMessage());
}
});
}
使用lambda表达式再继续优化:
public void sendMessage(String topic, Object o) {
ListenableFuture> future = kafkaTemplate.send(topic, o);
future.addCallback(result -> logger.info("生产者成功发送消息到topic:{} partition:{}的消息", result.getRecordMetadata().topic(), result.getRecordMetadata().partition()),
ex -> logger.error("生产者发送消失败,原因:{}", ex.getMessage()));
}
再来简单研究一下 send(String topic, @Nullable V data)
方法。
我们使用send(String topic, @Nullable V data)
方法的时候实际会new 一个ProducerRecord
对象发送,
@Override
public ListenableFuture> send(String topic, @Nullable V data) {
ProducerRecord producerRecord = new ProducerRecord<>(topic, data);
return doSend(producerRecord);
}
ProducerRecord
类中有多个构造方法:
public ProducerRecord(String topic, V value) {
this(topic, null, null, null, value, null);
}
public ProducerRecord(String topic, Integer partition, Long timestamp, K key, V
......
}
如果我们想在发送的时候带上timestamp(时间戳)、key等信息的话,sendMessage()
方法可以这样写:
public void sendMessage(String topic, Object o) {
// 分区编号最好为 null,交给 kafka 自己去分配
ProducerRecord producerRecord = new ProducerRecord<>(topic, null, System.currentTimeMillis(), String.valueOf(o.hashCode()), o);
ListenableFuture> future = kafkaTemplate.send(producerRecord);
future.addCallback(result -> logger.info("生产者成功发送消息到topic:{} partition:{}的消息", result.getRecordMetadata().topic(), result.getRecordMetadata().partition()),
ex -> logger.error("生产者发送消失败,原因:{}", ex.getMessage()));
}
通过在方法上使用 @KafkaListener
注解监听消息,当有消息的时候就会通过 poll 下来消费。
import cn.javaguide.springbootkafka01sendobjects.entity.Book;
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Service;
@Service
public class BookConsumerService {
@Value("${kafka.topic.my-topic}")
private String myTopic;
@Value("${kafka.topic.my-topic2}")
private String myTopic2;
private final Logger logger = LoggerFactory.getLogger(BookProducerService.class);
private final ObjectMapper objectMapper = new ObjectMapper();
@KafkaListener(topics = {"${kafka.topic.my-topic}"}, groupId = "group1")
public void consumeMessage(ConsumerRecord bookConsumerRecord) {
try {
Book book = objectMapper.readValue(bookConsumerRecord.value(), Book.class);
logger.info("消费者消费topic:{} partition:{}的消息 -> {}", bookConsumerRecord.topic(), bookConsumerRecord.partition(), book.toString());
} catch (JsonProcessingException e) {
e.printStackTrace();
}
}
@KafkaListener(topics = {"${kafka.topic.my-topic2}"}, groupId = "group2")
public void consumeMessage2(Book book) {
logger.info("消费者消费{}的消息 -> {}", myTopic2, book.toString());
}
}
import cn.javaguide.springbootkafka01sendobjects.entity.Book;
import cn.javaguide.springbootkafka01sendobjects.service.BookProducerService;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import java.util.concurrent.atomic.AtomicLong;
@RestController
@RequestMapping(value = "/book")
public class BookController {
@Value("${kafka.topic.my-topic}")
String myTopic;
@Value("${kafka.topic.my-topic2}")
String myTopic2;
private final BookProducerService producer;
private AtomicLong atomicLong = new AtomicLong();
BookController(BookProducerService producer) {
this.producer = producer;
}
@PostMapping
public void sendMessageToKafkaTopic(@RequestParam("name") String name) {
this.producer.sendMessage(myTopic, new Book(atomicLong.addAndGet(1), name));
this.producer.sendMessage(myTopic2, new Book(atomicLong.addAndGet(1), name));
}
}
输入命令:
curl -X POST -F 'name=Java' http://localhost:9090/book
控制台打印出的效果如下:
my-topic 有2个partition(分区) 当你尝试发送多条消息的时候,你会发现消息会被比较均匀地发送到每个 partion 中。