pickle模块存储数据

       在机器学习中,我们常常需要把训练好的模型存储起来,这样在进行决策时直接将模型读出,而不需要重新训练模型,这样就大大节约了时间。Python提供的pickle模块就很好地解决了这个问题,它可以序列化对象并保存到磁盘中,并在需要的时候读取出来,任何对象都可以执行序列化操作。

Pickle模块中最常用的函数为:

(1)pickle.dump(obj, file, [,protocol])

        函数的功能:将obj对象序列化存入已经打开的file中。

       参数讲解:

  • obj:想要序列化的obj对象。
  • file:文件名称。
  • protocol:序列化使用的协议。如果该项省略,则默认为0。如果为负值或HIGHEST_PROTOCOL,则使用最高的协议版本。

(2)pickle.load(file)

        函数的功能:将file中的对象序列化读出。

        参数讲解:

  • file:文件名称。

(3)pickle.dumps(obj[, protocol])

       函数的功能:将obj对象序列化为string形式,而不是存入文件中。

       参数讲解:

  • obj:想要序列化的obj对象。
  • protocal:如果该项省略,则默认为0。如果为负值或HIGHEST_PROTOCOL,则使用最高的协议版本。

(4)pickle.loads(string)

       函数的功能:从string中读出序列化前的obj对象。

       参数讲解:

  • string:文件名称。

     【注】 dump() 与 load() 相比 dumps() 和 loads() 还有另一种能力dump()函数能一个接着一个地将几个对象序列化存储到同一个文件中,随后调用load()来以同样的顺序反序列化读出这些对象。

#### 代码示例
#使用pickle模块存储数据时,文件的读写必须是二进制
import pickle
dict={
    'xiaoming':23,
    'xiaowang':24,
    'xiaoli':21
}
file=open('class.txt',mode='wb')
pickle.dump(dict,file)
file.close()
file=open('class.txt',mode='rb')
newDict=pickle.load(file)
file.close()
print(type(newDict))  #

你可能感兴趣的:(Python语言,pickle模块,python存储数据)