- 觉察与正念
佳佳的宝瓶子
今天因为交电费的事与妈妈沟通。在沟通的过程中,年届八十的母亲一直给我强调着过去怎么怎么。父母家的电费一直是银行代扣的,这样的模式自从可以通过银行代扣便开始了。可见那时候的父母还是蛮新潮的,能接受新事物的。至从有了智能手机,人类便进入了大数据时代。通过微信或支付宝来交电费方便得多。可惜父亲不在了,老母亲是连手机都坚决不用的人。(因为想要掩饰自己的不能、不敢,所以干脆拒绝!不愿意做任何的改变)。今年,
- Java大视界:Java大数据在智能医疗电子健康档案数据挖掘与健康服务创新>
Loving_enjoy
计算机学科论文创新点人工智能深度学习迁移学习经验分享
>本文通过完整代码示例,揭秘如何用Java大数据技术挖掘电子健康档案价值,实现疾病预测、个性化健康管理等创新服务。###一、智能医疗时代的数据金矿电子健康档案(EHR)作为医疗数字化的核心载体,包含海量患者全生命周期健康数据。据统计,全球医疗数据量正以每年**48%的速度增长**,单个三甲医院年数据量可达**PB级**。这些数据蕴藏着疾病规律、治疗效能的宝贵知识,但传统技术难以有效挖掘。**Jav
- Postman + Newman + Jenkins 接口自动化测试
Thomas Kant
自动化测试postmannewmanjenkinsallure
亲爱的技术爱好者们,热烈欢迎来到Kant2048的博客!我是ThomasKant,很开心能在CSDN上与你们相遇~本博客的精华专栏:【自动化测试】【测试经验】【人工智能】【Python】Postman
- 无人值守人工智能智慧系统数据分析:深度洞察与未来展望
呆码科技
人工智能数据分析数据挖掘
无人值守人工智能智慧系统数据分析:深度洞察与未来展望随着科技的飞速发展,人工智能(AI)技术已逐渐渗透到社会经济的各个领域,其中无人值守人工智能智慧系统作为AI技术应用的前沿阵地,正引领着一场深刻的行业变革。这类系统通过集成高级算法、大数据分析、物联网(IoT)及云计算等先进技术,实现了对复杂环境的自主监控、智能决策与高效管理,极大地提升了运营效率,降低了人力成本,并开启了数据驱动决策的新纪元。本
- 论“人工智能生命体”站在那个高度?(之二)
中國龍在廣州
人工智能-智能体-具身智能人工智能
第一部分:人工智能生命体人工智能生命体,提及的是《人工智能生命体新启点》一书,原文附后,本文中以本书代表。《人工智能生命体新启点》一书,是在现今科学技术发展,从人工智能、智能体、具身智能等大环境下,形成的一种全新理念的理论指导,以此发展出具有自我意识的人工智能生命体,拥有现代科技并以生命体的形式出现,具备类人类般的思想活动,更好的体现与融入人类的社会环境;具有自我意识的智能生命体就如人类的拥有大脑
- 医疗AI与融合数据库的整合:挑战、架构与未来展望(上)
Allen_Lyb
数智化教程(第二期)人工智能数据库架构
引言随着人工智能(AI)在医疗健康领域的广泛应用,数据已成为医疗AI发展的核心驱动力。然而,医疗数据具有极度的异构性(包括结构化电子病历、医学影像向量、基因组JSON/图结构、传感器时序等),传统数据架构难以高效整合。因数据孤岛、复杂ETL流程以及昂贵维护成本,医疗AI平台通常难以充分发挥价值。融合数据库(ConvergedDatabase/多模态一体化数据库)通过支持SQL、JSON、图、向量、
- 一文看懂:马斯克旗下人工智能公司 xAI 正式推出的Grok 4,Grok 4 如何开启 “多智能体内生化” 的 AI 新范式,重塑多模态大模型与 AI Agent 未来
陈敬雷-充电了么-CEO兼CTO
《GPT多模态大模型与AIAgent智能体》新书内容人工智能gptagichatgpt大模型deeplearning神经网络
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】文章目录GPT多模态大模型与AIAgent智能体系列二十六一文看懂:马斯克旗下人工智能公司xAI正式推出的Grok4,Grok4如何开启“多智能体内生化”的AI新范
- 大模型开源王炸!Kimi K2凭万亿参数撕开大模型天花板:代码、Agent、推理全碾压,32家企业疯抢接入
陈敬雷-充电了么-CEO兼CTO
《GPT多模态大模型与AIAgent智能体》新书内容transformerchatgpt深度学习lstmkimiAgentAIGC
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】文章目录GPT多模态大模型与AIAgent智能体系列二十七开源王炸!KimiK2凭万亿参数撕开大模型天花板:代码、Agent、推理全碾压,32家企业疯抢接入一、架构
- Prompt:开启与AI高效对话的钥匙
解密Prompt:开启与AI高效对话的钥匙一、什么是Prompt?——AI的“使用说明书”想象一下,你正在指挥一位无所不知但毫无主动性的“实习生”——人工智能(AI)。你不能指望它“心领神会”,你必须给出清晰、具体的指令,它才能准确地完成你想要的任务。这个指令,就是Prompt(提示或提示词)。简单来说,Prompt是你向AI(如大型语言模型LLM)发出的文本或问题,用以引导它生成特定的、高质量的
- AI人工智能中Actor - Critic算法的深入解析与应用场景
AI智能探索者
AIAgent智能体开发实战人工智能算法ai
AI人工智能中Actor-Critic算法的深入解析与应用场景关键词:Actor-Critic、强化学习、策略梯度、价值函数、深度强化学习、马尔可夫决策过程、A2C/A3C摘要:本文将深入解析Actor-Critic算法的核心原理,从基础概念到数学推导,再到实际应用场景。我们将通过生动的比喻解释这一强化学习中的重要算法,展示其Python实现代码,并探讨它在游戏AI、机器人控制等领域的应用。最后,
- AI人工智能领域多模态大模型的发展历程回顾
AI智能探索者
AIAgent智能体开发实战人工智能ai
AI人工智能领域多模态大模型的发展历程回顾关键词:AI人工智能、多模态大模型、发展历程、技术演变、应用场景摘要:本文旨在全面回顾AI人工智能领域多模态大模型的发展历程。通过对不同阶段核心概念、算法原理、数学模型等方面的深入剖析,结合实际项目案例,探讨其在各个领域的应用场景。同时,推荐相关的学习资源、开发工具和重要论文著作,最后总结多模态大模型的未来发展趋势与挑战,并对常见问题进行解答。1.背景介绍
- AI人工智能领域Actor - Critic算法的可视化分析
AI智能探索者
AIAgent智能体开发实战人工智能算法ai
AI人工智能领域Actor-Critic算法的可视化分析关键词:Actor-Critic算法、强化学习、策略梯度、价值函数、可视化分析、神经网络、马尔可夫决策过程摘要:本文深入浅出地讲解Actor-Critic算法的核心原理,通过生活化的比喻和可视化分析,帮助读者理解这一强化学习中的重要算法。我们将从基础概念入手,逐步剖析算法架构,并通过Python代码实现和可视化演示,展示算法在实际问题中的应用
- 如何用深度学习实现图像风格迁移
最近研学过程中发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击链接跳转到网站人工智能及编程语言学习教程。读者们可以通过里面的文章详细了解一下人工智能及其编程等教程和学习方法。下面开始对正文内容的介绍。前言图像风格迁移是人工智能领域中一个非常有趣且富有创意的应用。它能够让一张普通的照片瞬间变成梵高笔下的《星月夜》风格,或者像莫奈的《睡莲》一样充满艺术感。这种技术不仅在
- AI人工智能领域TensorFlow的模型训练策略
AIGC应用创新大全
人工智能tensorflowpythonai
AI人工智能领域TensorFlow的模型训练策略关键词:TensorFlow、模型训练、深度学习、神经网络、优化策略、分布式训练、迁移学习摘要:本文将深入探讨TensorFlow框架下的模型训练策略,从基础概念到高级技巧,全面解析如何高效训练深度学习模型。我们将从数据准备、模型构建、训练优化到部署应用,一步步揭示TensorFlow模型训练的核心技术,并通过实际代码示例展示最佳实践。背景介绍目的
- Actor - Critic:AI人工智能领域的新宠儿
Actor-Critic:AI人工智能领域的新宠儿关键词:强化学习、Actor-Critic、策略梯度、价值函数、深度强化学习、A2C、A3C摘要:Actor-Critic是强化学习领域的一种重要算法框架,它结合了策略梯度方法和价值函数方法的优点,成为近年来人工智能领域的热门研究方向。本文将用通俗易懂的方式介绍Actor-Critic的核心概念、工作原理、实现方法以及实际应用,帮助读者理解这一强大
- 探索AI人工智能中遗传算法的进化奥秘
AI学长带你学AI
人工智能ai
探索AI人工智能中遗传算法的进化奥秘关键词:遗传算法、自然选择、基因编码、适应度函数、群体进化、交叉变异、优化问题摘要:本文将用生物进化视角解读人工智能中的遗传算法原理。通过达尔文进化论的生活化比喻,结合Python代码实例演示如何模拟基因遗传、自然选择等过程,揭示遗传算法在路径规划、参数优化等场景的应用奥秘。最后探讨遗传算法的局限性与未来发展方向。背景介绍目的和范围本文旨在用通俗易懂的方式解析遗
- 深度剖析AI人工智能领域多模态大模型
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能ai
深度剖析AI人工智能领域多模态大模型关键词:AI人工智能、多模态大模型、模型架构、算法原理、应用场景摘要:本文旨在对AI人工智能领域的多模态大模型进行深度剖析。首先介绍多模态大模型的背景知识,包括目的、预期读者等。接着阐述核心概念,分析其架构和原理,并给出相应的流程图。通过Python代码详细讲解核心算法原理和具体操作步骤,同时用数学模型和公式进一步阐释。在项目实战部分,给出实际案例及详细代码解读
- Open AI在AI人工智能领域的创新之路
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能ai
OpenAI在AI人工智能领域的创新之路关键词:OpenAI、人工智能、创新之路、技术突破、应用场景摘要:本文深入探讨了OpenAI在AI人工智能领域的创新之路。首先介绍了OpenAI的背景信息,包括其成立目的、发展历程等。接着详细阐述了OpenAI的核心概念,如强化学习、生成式对抗网络等,并通过示意图和流程图展示其原理和架构。然后讲解了相关核心算法原理,结合Python代码进行具体说明。同时,给
- 探索AI人工智能领域Actor - Critic的无限潜力
探索AI人工智能领域Actor-Critic的无限潜力关键词:AI人工智能、Actor-Critic、强化学习、策略网络、价值网络摘要:本文将深入探索AI人工智能领域中Actor-Critic方法的无限潜力。我们会先介绍其背景知识,接着用通俗易懂的方式解释核心概念,包括Actor和Critic的含义及它们之间的关系,然后阐述其核心算法原理和具体操作步骤,还会给出数学模型和公式并举例说明。通过项目实
- AI人工智能领域多模态大模型的技术瓶颈与解决方案
AI学长带你学AI
人工智能ai
AI人工智能领域多模态大模型的技术瓶颈与解决方案关键词:多模态大模型、技术瓶颈、跨模态对齐、计算效率、数据稀缺、模型泛化、解决方案摘要:本文深入探讨了AI人工智能领域多模态大模型发展过程中面临的主要技术瓶颈,包括跨模态对齐困难、计算资源消耗巨大、高质量多模态数据稀缺、模型泛化能力不足等问题。针对这些挑战,我们提出了系统性的解决方案,涵盖算法优化、架构创新、数据增强等多个维度。文章通过理论分析、数学
- 【杂谈】-人工智能:从无序部署到可问责治理的转型之路
人工智能:从无序部署到可问责治理的转型之路文章目录人工智能:从无序部署到可问责治理的转型之路1、失控的人工智能与“漂移”现象的潜在危机2、穿透迷雾:探寻人工智能治理的真谛3、民主化进程中的治理觉醒4、迈向未来:构建可问责的人工智能生态体系5、抉择时刻:关乎人工智能发展走向的关键权衡人工智能已然步入一个关键的转折阶段。当下,众多企业竞相投身于各类人工智能系统的部署浪潮之中,从功能多样的生成式人工智能
- 浮漂式水质监测设备:智能守护水环境的未来之眼
柏峰电子
人工智能
浮漂式水质监测设备:智能守护水环境的未来之眼柏峰【BF-FBSZ】随着全球水资源短缺和水污染问题日益严峻,水质监测技术正迎来前所未有的发展机遇。作为这一领域的创新突破,浮漂式水质监测设备凭借其实时性、智能化和网络化优势,正在重塑水资源管理的新格局。本文将深入探讨这一技术的原理、特点、应用场景及未来发展趋势。一、技术原理与系统架构浮漂式水质监测设备是一种集成了现代传感器技术、物联网和大数据分析的智能
- 从“直觉抢答”到“深度思考”:大模型的“慢思考”革命,思维链、树、图如何让AI越来越像人?
陈敬雷-充电了么-CEO兼CTO
《GPT多模态大模型与AIAgent智能体》新书内容人工智能chatgptAIGC神经网络python大模型思维链
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】文章目录GPT多模态大模型与AIAgent智能体系列十六从“直觉抢答”到“深度思考”:大模型的“慢思考”革命,思维链、树、图如何让AI越来越像人?引言:当AI从“快
- 基于蜣螂算法优化多头注意力机制的卷积神经网络结合双向长短记忆神经网络实现温度预测DBO-CNN-biLSTM-Multihead-Attention附matlab代码
matlab科研助手
神经网络算法cnn
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍温度预测在气象学、农业、能源等领域具有重要的应用价值。随着大数据和人工智能技术的快速发
- 股票基金量化开源平台对比
Mr.小海
开源开源金融
股票基金量化开源平台对比分析报告引言研究背景与意义在金融科技快速发展的背景下,量化交易已成为现代金融市场中投资者追求高效与精准交易的核心工具。通过程序化方式,投资者能够迅速处理海量市场数据,制定并执行复杂交易策略,其高效性、低情绪干扰及策略多样性等优势显著[1]。特别是随着人工智能技术的深化,2025年基于深度学习与机器学习的开源量化工具持续涌现,推动行业向数据驱动转型——量化交易将决策逻辑从经验
- 开源基金/股票量化平台调研报告
Mr.小海
金融
开源基金/股票量化平台调研报告引言调研背景与目的近年来,随着人工智能技术的持续深化,量化交易领域迎来了深刻变革。2025年,基于深度学习和机器学习的开源工具不断涌现,不仅在技术层面实现突破,更在实际应用中展现出强大竞争优势,推动行业创新与升级[1].作为融合数学、统计与计算机技术的科技驱动型金融策略,量化交易通过自动化与数据驱动方法提升投资决策效率与准确性,已成为金融机构与投资者追求超额收益的重要
- 同步发电机与逆变型电源故障电流特性对比实验研究
神经网络15044
MATLAB专栏仿真模型生成对抗网络学习人工智能开发语言matlab
同步发电机与逆变型电源故障电流特性对比实验研究前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。1.研究背景与意义随着可再生能源在电力系统中的渗透率不断提高,逆变型电源(Inverter-BasedResources,IBR)在电网中的比重日益增加。与传统同步发电机相比,IBR的故障响应特性存在显著差异,这对电力系统的保护设计和运行控制提出了新的挑战
- AIGC革命:基于魔搭社区的LLM应用开发实战——从模型微调到系统部署
Liudef06小白
AIGC人工智能特殊专栏人工智能魔搭AIGCLLM
AIGC革命:基于魔搭社区的LLM应用开发实战——从模型微调到系统部署1.AIGC技术演进与魔搭社区生态解析人工智能生成内容(AIGC)正在重塑内容创作、软件开发和人机交互的边界。从OpenAI的GPT系列到StabilityAI的StableDiffusion,生成式AI技术正以惊人的速度发展。在这场技术革命中,魔搭社区(ModelScope)作为中国领先的AI模型开源平台,正成为开发者探索AI
- 人工智能界的“黑话“大揭秘:AI新词汇速成指南
人工智能界的"黑话"大揭秘:AI新词汇速成指南你是否曾在科技大佬们讨论AI时一头雾水?听到RAG、Agent、PromptEngineering时以为他们在说天书?别担心,今天我们就来一场AI术语的"通俗化运动",让你轻松混入AI圈子,秒变内行人!LLM(大型语言模型):AI界的"大胃王"LLM是吞噬了互联网大部分文字的"数据饕餮"。特点:训练数据以TB(万亿字节)计算参数动辄上千亿计算能力堪比小
- 解密Claude系列:从原理到实践的全方位解析
软考和人工智能学堂
强化学习人工智能Claude快速入门Claude
引言:Claude系列模型的崛起在人工智能领域,大型语言模型(LLM)的发展日新月异。OpenAI的GPT系列和Anthropic的Claude系列无疑是这一领域的双子星。Claude系列模型以其独特的"ConstitutionalAI"理念和强大的对话能力,正在重塑人机交互的未来。本文将深入探讨Claude系列的技术原理、架构特点,并通过实践代码展示其强大能力。Claude系列的技术演进1.Cl
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla