- 数据仓库与数据挖掘记录 三
匆匆整棹还
数据挖掘
数据仓库的数据存储和处理数据的ETL过程数据ETL是用来实现异构数据源的数据集成,即完成数据的抓取/抽取、清洗、转换.加载与索引等数据调和工作,如图2.2所示。1)数据提取(Extract)从多个数据源中获取原始数据(如数据库、日志文件、API、云存储等)。数据源可能是结构化(如MySQL)、半结构化(如JSON)、非结构化(如文本)。关键技术:SQL查询、Web爬虫、日志采集工具(如Flume)
- 【大数据技术】搭建完全分布式高可用大数据集群(Flume)
Want595
Python大数据采集与分析大数据分布式flume
搭建完全分布式高可用大数据集群(Flume)apache-flume-1.11.0-bin.tar.gz注:请在阅读本篇文章前,将以上资源下载下来。写在前面本文主要介绍搭建完全分布式高可用集群Flume的详细步骤。注意:统一约定将软件安装包存放于虚拟机的/software目录下,软件安装至/opt目录下。安装Flume用finalshell将压缩包上传到虚拟机master的/software目录下
- 计算机毕业设计hadoop+spark+hive新能源汽车数据分析可视化大屏 汽车推荐系统 新能源汽车推荐系统 汽车爬虫 汽车大数据 机器学习 大数据毕业设计 深度学习 知识图谱 人工智能
qq+593186283
hadoop大数据人工智能
(1)设计目的本次设计一个基于Hive的新能源汽车数据仓管理系统。企业管理员登录系统后可以在汽车保养时,根据这些汽车内置传感器传回的数据分析其故障原因,以便维修人员更加及时准确处理相关的故障问题。或者对这些数据分析之后向车主进行预警提示车主注意保养汽车,以提高汽车行驶的安全系数。(2)设计要求利用Flume进行分布式的日志数据采集,Kafka实现高吞吐量的数据传输,DateX进行数据清洗、转换和整
- python消费kafka数据nginx日志实时_基于nginx+flume+kafka+mongodb实现埋点数据采集
weixin_39534208
名词解释埋点其实就是用于记录用户在页面的一些操作行为。例如,用户访问页面(PV,PageViews)、访问页面用户数量(UV,UserViews)、页面停留、按钮点击、文件下载等,这些都属于用户的操作行为。开发背景我司之前在处理埋点数据采集时,模式很简单,当用户操作页面控件时,前端监听到操作事件,并根据上下文环境,将事件相关的数据通过接口调用发送至埋点数据采集服务(简称ets服务),ets服务对数
- 大数据-267 实时数仓 - ODS Lambda架构 Kappa架构 核心思想
m0_74823336
面试学习路线阿里巴巴大数据架构
点一下关注吧!!!非常感谢!!持续更新!!!Java篇开始了!MyBatis更新完毕目前开始更新Spring,一起深入浅出!目前已经更新到了:Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis(已更完)Kafka(已更完)Spark(已更完)Flink(已更完)Cl
- nginx+flume网络流量日志实时数据分析实战_日志数据分析(1)
2401_84182578
程序员nginxflume数据分析
得到visits模型hadoopjar/export/data/mapreduce/web_log.jarcn.itcast.bigdata.weblog.clickstream.ClickStreamVisit网络日志数据分析-数据加载对于日志数据的分析,Hive也分为三层:ods层、dw层、app层创建数据库createdatabaseifnotexistsweb_log_ods;create
- 【大数据入门核心技术-Flume】(二)Flume安装部署
forest_long
大数据技术入门到21天通关bigdatahadoop大数据hbaseflume
目录一、准备工作1、基本Hadoop环境安装2、下载安装包二、安装1、解压2、修改环境变量3、修改并配置flume-env.sh文件4、验证是否安装成功一、准备工作1、基本Hadoop环境安装参考Hadoop安装【大数据入门核心技术-Hadoop】(五)Hadoop3.2.1非高可用集群搭建【大数据入门核心技术-Hadoop】(六)Hadoop3.2.1高可用集群搭建2、下载安装包官方网址:
- java.io.FileNotFoundException: /tmp/log/flume-ng/flume.log (Permission denied)
海洋 之心
Flume问题解决Hadoop问题解决javaflume开发语言zookeeper大数据
文章目录问题描述:原因分析:解决方案:问题描述:使用Flume将本地文件监控上传到HDFS上时出现log4j:ERRORsetFile(null,true)callfailed.java.io.FileNotFoundException:/tmp/log/flume-ng/flume.log(Permissiondenied)log4j:ERRORsetFile(null,true)callfai
- flume系列之:消费Kafka集群Topic报错java.io.IOException: Can‘t resolve address: data03:9092
快乐骑行^_^
flumeflume系列消费Kafka集群TopicOExceptionresolveaddress
flume系列之:消费Kafka集群Topic报错java.io.IOException:Can'tresolveaddress:data03:9092Causedby:java.nio.channels.UnresolvedAddressException一、flume消费Kafka集群Topic报错二、报错原因三、解决方法一、flume消费Kafka集群Topic报错21Sep202214:5
- 基于Spark的实时计算服务的流程架构
小小搬运工40
spark大数据
基于Spark的实时计算服务的流程架构通常涉及多个组件和步骤,从数据采集到数据处理,再到结果输出和监控。以下是一个典型的基于Spark的实时计算服务的流程架构:1.数据源数据源是实时计算服务的起点,常见的数据源包括:消息队列:如Kafka、RabbitMQ、AmazonKinesis等。日志系统:如Flume、Logstash等。传感器数据:物联网设备产生的数据流。数据库变更数据捕获(CDC):如
- 大数据开发的底层逻辑是什么?
瑰茵
大数据
大数据开发的底层逻辑主要围绕数据的生命周期进行,包括数据的采集、存储、处理、分析和可视化等环节。以下是大数据开发的一些关键底层逻辑:数据采集:目的:从不同的数据源(如日志文件、数据库、传感器等)收集数据。方法:使用数据采集工具(如ApacheFlume、ApacheKafka、ApacheSqoop)来捕获和传输数据。数据存储:目的:将收集到的数据存储在可靠且可扩展的存储系统中。方法:使用分布式文
- flume+ Elasticsearch +kibana环境搭建及讲解
pincharensheng
大数据flumekibanaelasticsearch分布式
1、软件介绍1.1、flume1.1.1、flume介绍1)flume概念1、flume是一个分布式的日志收集系统,具有高可靠、高可用、事务管理、失败重启等功能。数据处理速度快,完全可以用于生产环境;2、flume的核心是agent。agent是一个java进程,运行在日志收集端,通过agent接收日志,然后暂存起来,再发送到目的地;3、agent里面包含3个核心组件:source、channel
- Hive数据仓库中的数据导出到MySQL的数据表不成功
sin2201
出错问题数据仓库hivemysql
可能的原因:(1)没有下载flume和sqoop(2)权限问题:因为MySQL数据库拒绝了root用户从hadoop3主机的连接请求,root用户没有从hadoop3主机进行连接的权限解决:通过MySQL的授权命令来授予权限mysql>GRANTALLPRIVILEGESONsqoop_weblog.*TO'root'@'hadoop3'IDENTIFIEDBY'2020';QueryOK,0ro
- python消费kafka数据nginx日志实时_Openresty+Lua+Kafka实现日志实时采集
weixin_39997311
简介在很多数据采集场景下,Flume作为一个高性能采集日志的工具,相信大家都知道它。许多人想起Flume这个组件能联想到的大多数都是Flume跟Kafka相结合进行日志的采集,这种方案有很多他的优点,比如高性能、高吞吐、数据可靠性等。但是我们如果要求对日志进行实时的采集,这显然不是一个好的解决方案。原因如下:就目前来说,Flume能支持实时监控一个目录的数据文件,一旦对某个目录的文件采集完成,就会
- openresty+lua实现实时写kafka
sky@梦幻未来
大数据openrestynginxopenrestylua
一.背景在使用openresty+lua+nginx+flume,通过定时切分日志发送kafka的方式无法满足实时性的情况下,小编开始研究openresty+lua+nginx+kafka实时写kafka,从而达到数据实时性,和高性能保证。二.实现1.openresty安装nginx,以及lua的使用请看博主上一篇博客https://blog.csdn.net/qq_29497387/articl
- SeaTunnel 与 DataX 、Sqoop、Flume、Flink CDC 对比
不二人生
#数据集成工具SeaTunnel
文章目录SeaTunnel与DataX、Sqoop、Flume、FlinkCDC对比同类产品横向对比2.1、高可用、健壮的容错机制2.2、部署难度和运行模式2.3、支持的数据源丰富度2.4、内存资源占用2.5、数据库连接占用2.6、自动建表2.7、整库同步2.8、断点续传2.9、多引擎支持2.10、数据转换算子2.11、性能2.12、离线同步2.13、增量同步&实时同步2.14、CDC同步2.15
- flume系列之:flume落cos
快乐骑行^_^
日常分享专栏flume系列
flume系列之:flume落cos一、参考文章二、安装cosjar包三、添加hadoop-cos的相关配置四、flume环境添加hadoop类路径五、使用cos路径六、启动/重启flume一、参考文章Kafka数据通过Flume存储到HDFS或COSflumetocos使用指南二、安装cosjar包将对应hadoop版本的hadoop-cos的jar包(hadoop-cos-{hadoop.ve
- Flume 简介01 作用 核心概念 事务机制 安装 配置入门实战
湖中屋
Flumeflume
Flume1.业务系统为什么会产生用户行为日志,怎么产生的用户行文日志:每一次访问的行为(访问、搜索)产生的日志记录用户行为日志的目的:1.商家会精准的给你呈现符合你的个人界面2.商家会给你个人添加用户标签,更加精准的分析埋点等2.flume用来做什么的(采集传输数据的,分布式的,可靠的)ApacheFlume是一个从可以收集例如日志,事件等数据资源,并将这些数量庞大的数据从各项数据资源中集中起来
- 大数据-257 离线数仓 - 数据质量监控 监控方法 Griffin架构
武子康
大数据离线数仓大数据数据仓库java后端hadoophive
点一下关注吧!!!非常感谢!!持续更新!!!Java篇开始了!目前开始更新MyBatis,一起深入浅出!目前已经更新到了:Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis(已更完)Kafka(已更完)Spark(已更完)Flink(已更完)ClickHouse(已
- kafka直接对接nginx
Lu_Xiao_Yue
nginxkafka
很多时候我们要对nginx产生的日志进行分析都是通过flume监控nginx产生的日志,通过flume把日志文件发送该kafka,flume作为生产者,但是这种方式的缺点就是可能效率会比较慢,除此之外还可以使用kafka直接对接nginx,nginx作为生产者,把log日志直接对接到kafka的某些分区中,这种方法的效率比较高,但是缺点就是可能会出现数据丢失,可以通过把nginx的日志进行一份给k
- 大数据新视界 --大数据大厂之大数据实战指南:Apache Flume 数据采集的配置与优化秘籍
青云交
大数据新视界数据库ApacheFlume数据采集安装部署配置优化高级功能大数据工具集成
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- nosql数据库技术与应用知识点
皆过客,揽星河
NoSQLnosql数据库大数据数据分析数据结构非关系型数据库
Nosql知识回顾大数据处理流程数据采集(flume、爬虫、传感器)数据存储(本门课程NoSQL所处的阶段)Hdfs、MongoDB、HBase等数据清洗(入仓)Hive等数据处理、分析(Spark、Flink等)数据可视化数据挖掘、机器学习应用(Python、SparkMLlib等)大数据时代存储的挑战(三高)高并发(同一时间很多人访问)高扩展(要求随时根据需求扩展存储)高效率(要求读写速度快)
- Flume:大规模日志收集与数据传输的利器
傲雪凌霜,松柏长青
后端大数据flume大数据
Flume:大规模日志收集与数据传输的利器在大数据时代,随着各类应用的不断增长,产生了海量的日志和数据。这些数据不仅对业务的健康监控至关重要,还可以通过深入分析,帮助企业做出更好的决策。那么,如何高效地收集、传输和存储这些海量数据,成为了一项重要的挑战。今天我们将深入探讨ApacheFlume,它是如何帮助我们应对这些挑战的。一、Flume概述ApacheFlume是一个分布式、可靠、可扩展的日志
- 解决flume在抽取不断产生的日志文件时,hdfs上出现很多小文件的问题
lzhlizihang
flumehdfs大数据
问题在使用flume时,需要编写conf文件,然后执行,明明sinks已经指定了roll的三个参数:a1.sinks.k1.hdfs.rollInterval=0(根据写入时间来切割)a1.sinks.k1.hdfs.rollSize=0(根据写入的文件大小来切割)a1.sinks.k1.hdfs.rollCount=0(根据Event数量来切割)其中0代表不根据其属性来切割文件但是hdfs上还会
- pyspark kafka mysql_数据平台实践①——Flume+Kafka+SparkStreaming(pyspark)
weixin_39793638
pysparkkafkamysql
蜻蜓点水Flume——数据采集如果说,爬虫是采集外部数据的常用手段的话,那么,Flume就是采集内部数据的常用手段之一(logstash也是这方面的佼佼者)。下面介绍一下Flume的基本构造。Agent:包含Source、Channel和Sink的主体,它是这3个组件的载体,是组成Flume的数据节点。Event:Flume数据传输的基本单元。Source:用来接收Event,并将Event批量传
- 【大数据Big DATA】大数据解决方案,提供完整的大数据采集,大数据存储,大数据处理,具体业务应用解决方案
_晓夏_
JAVA大数据大数据解决方案大数据BIGDATA大数据采集大数据存储大数据处理大数据分析
大数据解决方案是指利用大数据技术,结合企业实际业务需求,为企业提供数据采集、存储、处理、分析和报告等一站式服务,以帮助企业更好地利用大数据提高运营效率、优化决策制定。以下是一些常见的大数据解决方案:一、数据采集数据采集是大数据解决方案的起点,涉及从各种数据源中抓取和收集数据。常见的大数据采集工具包括Flume、Scribd等,这些工具可以帮助企业快速、高效地采集各类数据。二、数据存储大数据存储解决
- 大数据技术之Flume 企业开发案例——自定义 Interceptor(8)
大数据深度洞察
Flumeflume大数据
目录自定义Interceptor1)案例需求2)需求分析3)实现步骤创建一个Maven项目,并引入以下依赖。定义CustomInterceptor类并实现Interceptor接口。编辑flume配置文件分别在hadoop12,hadoop13,hadoop14上启动flume进程,注意先后顺序。在hadoop12使用netcat向localhost:44444发送字母和数字。观察hadoop13
- 大数据基础之Flume——Flume基础及Flume agent配置以及自定义拦截器
Clozzz
Flume大数据flumehadoop
Flume简介Flume用于将多种来源的日志以流的方式传输至Hadoop或者其他目的地 -一种可靠、可用的高效分布式数据收集服务Flume拥有基于数据流上的简单灵活架构,支持容错、故障转移与恢复由Cloudera2009年捐赠给Apache,现为Apache顶级项目Flume架构Client:客户端,数据产生的地方,如Web服务器Event:事件,指通过Agent传输的单个数据包,如日志数据通常对
- Flume介绍及调优
桓桓桓桓
分布式大数据日志搜集
一、概述Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。当前Flume有两个版本Flume0.9X版本的统称Flume-og,Flume1.X版本的统称Flume-ng。由于Flume-ng经过重大重构,与Flu
- 大数据技术之Flume 数据流监控——Ganglia 的安装与部署(11)
大数据深度洞察
Flume大数据flume
目录Flume数据流监控Ganglia的安装与部署Ganglia组件介绍1)安装Ganglia2)在hadoop12修改配置文件/etc/httpd/conf.d/ganglia.conf3)在hadoop12修改配置文件/etc/ganglia/gmetad.conf4)在hadoop12,hadoop13,hadoop14修改配置文件/etc/ganglia/gmond.conf5)在hado
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那