对于销售管理的数据分析,我们首先还是要明确分析这些销售指标的目的。漫无目的,分析得再漂亮,对决策没有指导意义,领导也不在意。
从两个层面上来讲,一个是对销售情况的整体把控,将重要的指标呈现在一张报表中,通常看的就是销售日报或周报,用于监控数据异常以便及时发现问题。另一个是特定性问题分析,通过数据的展现触发对业务思考,来挖掘原因和解决措施。比如为了提升销售额做的产品对分析,渠道对比分析,退货量对销售的影响等。
所以分析什么指标,不妨找销售经理深度了解其需求,特定问题特定分析。
抑或是参考下面销售数据分析体系,来寻求分析的思路。
以电商零售企业为例。主流的销售额、订单量、完成率、增长率、重点商品的销售占比、各平台销售占比。更多的也可以跟踪利润、成交率(转化率)、人均产出等。
基本业绩分析:
建设销售分析体系,以渠道组织、商品体系实时监控、统计销售业绩。
指标追踪:
根据数据间逻辑,从汇总数据的异常,从时间、品牌系列、地区纬度进行钻取识别问题。
商品价值分析:
根据商品的销量、利润等指标分析商品价值
价格带分析:
分析价格带利润、价格带销量。
可以从下面三个层面来跟踪这些指标。
3.1 指标的监控
一般都会对这些指标进行监控,有比较传统的:邮件报送(虽然数据的整合处理要花费业务人员很长时间,但也是要比没有好的);也有比较高端的:led屏幕实时监控。不管怎样的方式,也都是为了这一目的。现在很多公司已实现了指标监控的自动化,以及多平台整合与移动化监控等。
这儿举例用 FineReport 搭建的数据报表:
上面的图表是针对上一天销售指标的监控,最重要的两个指标(销售额与订单量)通过仪表盘展示出来,同时展示目标达成率,可以非常醒目的掌握最重要的信息。不达标?根据此信息就可以找到负责人进行责问了。
其他几个主要是订单分布情况,分别为各个价位的订单数量:体现客单价分布,若某一天的数据异常,比如发现客单价150的数量突然增加,则可能是店铺促销带来的效应(如果客单价下滑,但是销售额并没怎么增加,则非常明显的这次活动并不成功),也可能是某新品上线带来的冲击。总之,通过观察客单价的分布,是能够掌握很多信息的。
商品销量与平台销量的分布:主要是对销售分布的掌握,这类信息要说只通过这一天的数据来看出问题来,还是有些困难的,需要连起来看。下面会有提到。
订单时段分布:分析各个时间段的订单集中情况,例如上图中可以看出用户消费高峰期在晚上9点和10点左右。通过这些信息可以有针对性的调整销售策略。当然,如果突然某一天的订单分布有了很大的变动,也值得深入分析原因。
不止是每天的销售指标值的追踪,累计起来的数据可以产生不同的感觉,如下图所示。
一是累计销售额达成率,从图中可以看出整体的业绩表现。右边图表可以与该图形成联动,当数据异常时,可以进一步查看各月份的明细数据。
销售指标的累计值监控,是对整体销售业绩的掌控,而日报则关注与最近的数据,两者应更多的是结合起来使用,既要掌控全局,也要关注眼前。
3.2 指标的规律分布
很多事请,独立的去看,很难发现有什么异样,但是将时间维度拉开,扩大观察的视野之后,就会有很多新的发现。正如前面所说的产品销售分布与平台销售分布。
上图展示了各平台订单的占比分布情况。仔细浏览可以发现:在2月份(春节)期间,总体上天猫平台的订单占比很高;而京东平台上两个旗舰店,随着时间占比越来越高。这些信息会有助于帮助公司调整销售策略。
当数据出现异常变动,可以进一步浏览月份明细数据,可以获知店铺订单量占比的下降,是因为该店铺的业绩下滑,还是其他店铺的业绩提高,这类报表,不仅是对数据的跟踪,也是对各负责人对追踪。
3.3 指标的对比分析
比如从地区维度出发,从多个角度对比地区之间的差异,通过数据来给相关的团队以无形的压力,提醒各团队的异常情况并及时处理。
上图中,通过地图对各地区的销售情况进行直观的展示,可以选择不同的对比标准来展示。而右侧两个图表与地图形成联动,分别展示该地区的目标完成情况、同比环比情况。
通过上图中可以看出,2月份之前实际销售情况是优于计划值,而在2月份之后有些疲软,5月份的累积完成额已经落后于计划额。需要进一步分析销售情况不佳的原因。这时选择计划完成率对比指标,如果所有地区的完成率都偏低,那或许是大环境的问题,如果是大部分仅少部分地区的完成率偏低,那或许更多的是地区团队的问题。
通过这样的布局,可以对地区的销售情况进行较全面的展示,不能通过单一标准的好坏来展示团队的业绩。
比如,从商品维度出发,对比不同商品的价值贡献度,给到品牌负责人压力,以及为调整商品策略提供参考。
上图中,核心为左上角的商品利润分布图,通过该图对各商品的价值进行体现,这种图表适合商品数量较多的情况,可以很直观的显示出各商品的份量。
右侧两个折线图可与该气泡图实现联动,我们分别介绍一下:
权重曲线图:显示商品的权重分布情况,权重值=销售额/周权重系数,周权重系数在上一篇已经介绍过,是根据一周中每天的销售情况,对每天进行权重比例分配,例如周一到周日分布为:1.1,1,1.3,1.2,1.5,1.6,1.4。这样计算后得到的值应该是一个较为平缓的曲线,但是我们从图中看出,6月18日的销售额明显高于正常值,我们可以推断这一天是活动日,通过下面的图中我们可以发现6月18日的单价较低,也可以侧面证明该商品在6月18日属于活动促销期间。
同时,在6月17日的销售情况比正常值要低,很可能是因为第二天活动造成的。而月初偏低、月末偏高,则有可能是营运团队在月初有一定的懈怠,月末有追赶业绩的情况。
当然,上面的结论都是根据数据推测出的,若要对结论进行验证,还需其它方法,比如进行ab测试等。上述所用软件大家可以自行前往官网下载。