在一个完整的离线大数据处理系统中,除了hdfs+mapreduce+hive组成分析系统的核心之外,还需要数据采集、结果数据导出、任务调度等不可或缺的辅助系统,而这些辅助工具在hadoop生态体系中都有便捷的开源框架,如图所示:
tar -zxvf flume-ng-1.6.0-cdh5.14.0.tar.gz -C /export/servers/
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
cp flume-env.sh.template flume-env.sh
vim flume-env.sh
export JAVA_HOME=/export/servers/jdk1.8.0_141
# 定义这个agent中各组件的名字
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# 描述和配置source组件:r1
a1.sources.r1.type = netcat
a1.sources.r1.bind = 192.168.52.120
a1.sources.r1.port = 44444
# 描述和配置sink组件:k1
a1.sinks.k1.type = logger
# 描述和配置channel组件,此处使用是内存缓存的方式
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# 描述和配置source channel sink之间的连接关系
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
bin/flume-ng agent -c conf -f conf/netcat-logger.conf -n a1 -Dflume.root.logger=INFO,console
-c conf 指定flume自身的配置文件所在目录
-f conf/netcat-logger.con 指定我们所描述的采集方案
-n a1 指定我们这个agent的名字
yum -y install telnet
telnet node03 44444 # 使用telnet模拟数据发送
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
mkdir -p /export/servers/dirfile
vim spooldir.conf
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
##注意:不能往监控目中重复丢同名文件
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /export/servers/dirfile
a1.sources.r1.fileHeader = true
# Describe the sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.channel = c1
a1.sinks.k1.hdfs.path = hdfs://node01:8020/spooldir/files/%y-%m-%d/%H%M/
a1.sinks.k1.hdfs.filePrefix = events-
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = minute
a1.sinks.k1.hdfs.rollInterval = 3
a1.sinks.k1.hdfs.rollSize = 20
a1.sinks.k1.hdfs.rollCount = 5
a1.sinks.k1.hdfs.batchSize = 1
a1.sinks.k1.hdfs.useLocalTimeStamp = true
#生成的文件类型,默认是Sequencefile,可用DataStream,则为普通文本
a1.sinks.k1.hdfs.fileType = DataStream
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
Channel参数解释:
capacity:默认该通道中最大的可以存储的event数量
trasactionCapacity:每次最大可以从source中拿到或者送到sink中的event数量
keep-alive:event添加到通道中或者移出的允许时间
bin/flume-ng agent -c ./conf -f ./conf/spooldir.conf -n a1 -Dflume.root.logger=INFO,console
cd /export/servers/dirfile
node03开发配置文件
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
vim tail-file.conf
配置文件内容
agent1.sources = source1
agent1.sinks = sink1
agent1.channels = channel1
# Describe/configure tail -F source1
agent1.sources.source1.type = exec
agent1.sources.source1.command = tail -F /export/servers/taillogs/access_log
agent1.sources.source1.channels = channel1
#configure host for source
#agent1.sources.source1.interceptors = i1
#agent1.sources.source1.interceptors.i1.type = host
#agent1.sources.source1.interceptors.i1.hostHeader = hostname
# Describe sink1
agent1.sinks.sink1.type = hdfs
#a1.sinks.k1.channel = c1
agent1.sinks.sink1.hdfs.path = hdfs://node01:8020/weblog/flume-collection/%y-%m-%d/%H-%M
agent1.sinks.sink1.hdfs.filePrefix = access_log
agent1.sinks.sink1.hdfs.maxOpenFiles = 5000
agent1.sinks.sink1.hdfs.batchSize= 100
agent1.sinks.sink1.hdfs.fileType = DataStream
agent1.sinks.sink1.hdfs.writeFormat =Text
agent1.sinks.sink1.hdfs.rollSize = 102400
agent1.sinks.sink1.hdfs.rollCount = 1000000
agent1.sinks.sink1.hdfs.rollInterval = 60
agent1.sinks.sink1.hdfs.round = true
agent1.sinks.sink1.hdfs.roundValue = 10
agent1.sinks.sink1.hdfs.roundUnit = minute
agent1.sinks.sink1.hdfs.useLocalTimeStamp = true
# Use a channel which buffers events in memory
agent1.channels.channel1.type = memory
agent1.channels.channel1.keep-alive = 120
agent1.channels.channel1.capacity = 500000
agent1.channels.channel1.transactionCapacity = 600
# Bind the source and sink to the channel
agent1.sources.source1.channels = channel1
agent1.sinks.sink1.channel = channel1
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin
bin/flume-ng agent -c conf -f conf/tail-file.conf -n agent1 -Dflume.root.logger=INFO,console
mkdir -p /export/servers/shells/
cd /export/servers/shells/
vim tail-file.sh
#!/bin/bash
while true
do
date >> /export/servers/taillogs/access_log;
sleep 0.5;
done
创建文件夹
mkdir -p /export/servers/taillogs
启动脚本
sh /export/servers/shells/tail-file.sh
将node03机器上面解压后的flume文件夹拷贝到node02机器上面去
cd /export/servers
scp -r apache-flume-1.6.0-cdh5.14.0-bin/ node02:$PWD
在node02机器配置我们的flume
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
vim tail-avro-avro-logger.conf
##################
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /export/servers/taillogs/access_log
a1.sources.r1.channels = c1
# Describe the sink
##sink端的avro是一个数据发送者
a1.sinks = k1
a1.sinks.k1.type = avro
a1.sinks.k1.channel = c1
a1.sinks.k1.hostname = 192.168.52.120
a1.sinks.k1.port = 4141
a1.sinks.k1.batch-size = 10
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
直接将node03下面的脚本和数据拷贝到node02即可,node03机器上执行以下命令
cd /export/servers
scp -r shells/ taillogs/ node02:$PWD
在node03机器上开发flume的配置文件
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
vim avro-hdfs.conf
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
##source中的avro组件是一个接收者服务
a1.sources.r1.type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 192.168.52.120
a1.sources.r1.port = 4141
# Describe the sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://node01:8020/avro/hdfs/%y-%m-%d/%H%M/
a1.sinks.k1.hdfs.filePrefix = events-
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = minute
a1.sinks.k1.hdfs.rollInterval = 3
a1.sinks.k1.hdfs.rollSize = 20
a1.sinks.k1.hdfs.rollCount = 5
a1.sinks.k1.hdfs.batchSize = 1
a1.sinks.k1.hdfs.useLocalTimeStamp = true
#生成的文件类型,默认是Sequencefile,可用DataStream,则为普通文本
a1.sinks.k1.hdfs.fileType = DataStream
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
node03机器启动flume进程
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin
bin/flume-ng agent -c conf -f conf/avro-hdfs.conf -n a1 -Dflume.root.logger=INFO,console
node02机器启动flume进程
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/
bin/flume-ng agent -c conf -f conf/tail-avro-avro-logger.conf -n a1 -Dflume.root.logger=INFO,console
node02机器启shell脚本生成文件
cd /export/servers/shells
sh tail-file.sh
名称 |
HOST |
角色 |
Agent1 |
node01 |
Web Server |
Collector1 |
node02 |
AgentMstr1 |
Collector2 |
node03 |
AgentMstr2 |
node03机器执行以下命令
cd /export/servers
scp -r apache-flume-1.6.0-cdh5.14.0-bin/ node01:$PWD
scp -r shells/ taillogs/ node01:$PWD
node01机器配置agent的配置文件
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
vim agent.conf
#agent1 name
agent1.channels = c1
agent1.sources = r1
agent1.sinks = k1 k2
#
##set gruop
agent1.sinkgroups = g1
#
##set channel
agent1.channels.c1.type = memory
agent1.channels.c1.capacity = 1000
agent1.channels.c1.transactionCapacity = 100
#
agent1.sources.r1.channels = c1
agent1.sources.r1.type = exec
agent1.sources.r1.command = tail -F /export/servers/taillogs/access_log
#
agent1.sources.r1.interceptors = i1 i2
agent1.sources.r1.interceptors.i1.type = static
agent1.sources.r1.interceptors.i1.key = Type
agent1.sources.r1.interceptors.i1.value = LOGIN
agent1.sources.r1.interceptors.i2.type = timestamp
#
## set sink1
agent1.sinks.k1.channel = c1
agent1.sinks.k1.type = avro
agent1.sinks.k1.hostname = node02
agent1.sinks.k1.port = 52020
#
## set sink2
agent1.sinks.k2.channel = c1
agent1.sinks.k2.type = avro
agent1.sinks.k2.hostname = node03
agent1.sinks.k2.port = 52020
#
##set sink group
agent1.sinkgroups.g1.sinks = k1 k2
#
##set failover
agent1.sinkgroups.g1.processor.type = failover
agent1.sinkgroups.g1.processor.priority.k1 = 10
agent1.sinkgroups.g1.processor.priority.k2 = 1
agent1.sinkgroups.g1.processor.maxpenalty = 10000
#
node02机器修改配置文件
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
vim collector.conf
#set Agent name
a1.sources = r1
a1.channels = c1
a1.sinks = k1
#
##set channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
#
## other node,nna to nns
a1.sources.r1.type = avro
a1.sources.r1.bind = node02
a1.sources.r1.port = 52020
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = static
a1.sources.r1.interceptors.i1.key = Collector
a1.sources.r1.interceptors.i1.value = node02
a1.sources.r1.channels = c1
#
##set sink to hdfs
a1.sinks.k1.type=hdfs
a1.sinks.k1.hdfs.path= hdfs://node01:8020/flume/failover/
a1.sinks.k1.hdfs.fileType=DataStream
a1.sinks.k1.hdfs.writeFormat=TEXT
a1.sinks.k1.hdfs.rollInterval=10
a1.sinks.k1.channel=c1
a1.sinks.k1.hdfs.filePrefix=%Y-%m-%d
#
node03机器修改配置文件
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
vim collector.conf
#set Agent name
a1.sources = r1
a1.channels = c1
a1.sinks = k1
#
##set channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
#
## other node,nna to nns
a1.sources.r1.type = avro
a1.sources.r1.bind = node03
a1.sources.r1.port = 52020
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = static
a1.sources.r1.interceptors.i1.key = Collector
a1.sources.r1.interceptors.i1.value = node03
a1.sources.r1.channels = c1
#
##set sink to hdfs
a1.sinks.k1.type=hdfs
a1.sinks.k1.hdfs.path= hdfs://node01:8020/flume/failover/
a1.sinks.k1.hdfs.fileType=DataStream
a1.sinks.k1.hdfs.writeFormat=TEXT
a1.sinks.k1.hdfs.rollInterval=10
a1.sinks.k1.channel=c1
a1.sinks.k1.hdfs.filePrefix=%Y-%m-%d
node03机器上面启动flume
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin
bin/flume-ng agent -n a1 -c conf -f conf/collector.conf -Dflume.root.logger=DEBUG,console
node02机器上面启动flume
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin
bin/flume-ng agent -n a1 -c conf -f conf/collector.conf -Dflume.root.logger=DEBUG,console
node01机器上面启动flume
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin
bin/flume-ng agent -n agent1 -c conf -f conf/agent.conf -Dflume.root.logger=DEBUG,console
node01机器启动文件产生脚本
cd /export/servers/shells
sh tail-file.sh
node01服务器配置:
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
vim load_banlancer_client.conf
#agent name
a1.channels = c1
a1.sources = r1
a1.sinks = k1 k2
#set gruop
a1.sinkgroups = g1
#set channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.sources.r1.channels = c1
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /export/servers/taillogs/access_log
# set sink1
a1.sinks.k1.channel = c1
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = node02
a1.sinks.k1.port = 52020
# set sink2
a1.sinks.k2.channel = c1
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = node03
a1.sinks.k2.port = 52020
#set sink group
a1.sinkgroups.g1.sinks = k1 k2
#set failover
a1.sinkgroups.g1.processor.type = load_balance
a1.sinkgroups.g1.processor.backoff = true
a1.sinkgroups.g1.processor.selector = round_robin
a1.sinkgroups.g1.processor.selector.maxTimeOut=10000
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
vim load_banlancer_server.conf
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = node02
a1.sources.r1.port = 52020
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
node03服务器配置
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
vim load_banlancer_server.conf
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = node03
a1.sources.r1.port = 52020
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
启动node03的flume服务
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin
bin/flume-ng agent -n a1 -c conf -f conf/load_banlancer_server.conf -Dflume.root.logger=DEBUG,console
启动node02的flume服务
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin
bin/flume-ng agent -n a1 -c conf -f conf/load_banlancer_server.conf -Dflume.root.logger=DEBUG,console
启动node01的flume服务
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin
bin/flume-ng agent -n a1 -c conf -f conf/load_banlancer_client.conf -Dflume.root.logger=DEBUG,console
cd /export/servers/shells
sh tail-file.sh
服务器A对应的IP为 192.168.52.100
服务器B对应的IP为 192.168.52.110
服务器C对应的IP为 192.168.52.120
node01与node02服务器开发flume的配置文件
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
vim exec_source_avro_sink.conf
# Name the components on this agent
a1.sources = r1 r2 r3
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /export/servers/taillogs/access.log
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = static
## static拦截器的功能就是往采集到的数据的header中插入自己定## 义的key-value对
a1.sources.r1.interceptors.i1.key = type
a1.sources.r1.interceptors.i1.value = access
a1.sources.r2.type = exec
a1.sources.r2.command = tail -F /export/servers/taillogs/nginx.log
a1.sources.r2.interceptors = i2
a1.sources.r2.interceptors.i2.type = static
a1.sources.r2.interceptors.i2.key = type
a1.sources.r2.interceptors.i2.value = nginx
a1.sources.r3.type = exec
a1.sources.r3.command = tail -F /export/servers/taillogs/web.log
a1.sources.r3.interceptors = i3
a1.sources.r3.interceptors.i3.type = static
a1.sources.r3.interceptors.i3.key = type
a1.sources.r3.interceptors.i3.value = web
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = node03
a1.sinks.k1.port = 41414
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 20000
a1.channels.c1.transactionCapacity = 10000
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sources.r2.channels = c1
a1.sources.r3.channels = c1
a1.sinks.k1.channel = c1
在node03上面开发flume配置文件
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
vim avro_source_hdfs_sink.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
#定义source
a1.sources.r1.type = avro
a1.sources.r1.bind = 192.168.52.120
a1.sources.r1.port =41414
#添加时间拦截器
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = org.apache.flume.interceptor.TimestampInterceptor$Builder
#定义channels
a1.channels.c1.type = memory
a1.channels.c1.capacity = 20000
a1.channels.c1.transactionCapacity = 10000
#定义sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path=hdfs://192.168.52.100:8020/source/logs/%{type}/%Y%m%d
a1.sinks.k1.hdfs.filePrefix =events
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.writeFormat = Text
#时间类型
a1.sinks.k1.hdfs.useLocalTimeStamp = true
#生成的文件不按条数生成
a1.sinks.k1.hdfs.rollCount = 0
#生成的文件按时间生成
a1.sinks.k1.hdfs.rollInterval = 30
#生成的文件按大小生成
a1.sinks.k1.hdfs.rollSize = 10485760
#批量写入hdfs的个数
a1.sinks.k1.hdfs.batchSize = 10000
#flume操作hdfs的线程数(包括新建,写入等)
a1.sinks.k1.hdfs.threadsPoolSize=10
#操作hdfs超时时间
a1.sinks.k1.hdfs.callTimeout=30000
#组装source、channel、sink
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
在node01与node02上面开发shell脚本,模拟数据生成
cd /export/servers/shells
vim server.sh
#!/bin/bash
while true
do
date >> /export/servers/taillogs/access.log;
date >> /export/servers/taillogs/web.log;
date >> /export/servers/taillogs/nginx.log;
sleep 0.5;
done
node03启动flume实现数据收集
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin
bin/flume-ng agent -c conf -f conf/avro_source_hdfs_sink.conf -name a1 -Dflume.root.logger=DEBUG,console
node01与node02启动flume实现数据监控
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin
bin/flume-ng agent -c conf -f conf/exec_source_avro_sink.conf -name a1 -Dflume.root.logger=DEBUG,console
node01与node02启动生成文件脚本
cd /export/servers/shells
sh server.sh
cloudera
https://repository.cloudera.com/artifactory/cloudera-repos/
org.apache.flume
flume-ng-core
1.6.0-cdh5.14.0
provided
package cn.itcast.iterceptor;
import com.google.common.base.Charsets;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.ArrayList;
import java.util.List;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import static cn.itcast.iterceptor.CustomParameterInterceptor.Constants.*;
public class CustomParameterInterceptor implements Interceptor {
/** The field_separator.指明每一行字段的分隔符 */
private final String fields_separator;
/** The indexs.通过分隔符分割后,指明需要那列的字段 下标*/
private final String indexs;
/** The indexs_separator. 多个下标的分隔符*/
private final String indexs_separator;
/**
*
* @param indexs
* @param indexs_separator
*/
public CustomParameterInterceptor( String fields_separator,
String indexs, String indexs_separator,String encrypted_field_index) {
String f = fields_separator.trim();
String i = indexs_separator.trim();
this.indexs = indexs;
this.encrypted_field_index=encrypted_field_index.trim();
if (!f.equals("")) {
f = UnicodeToString(f);
}
this.fields_separator =f;
if (!i.equals("")) {
i = UnicodeToString(i);
}
this.indexs_separator = i;
}
/*
*
* \t 制表符 ('\u0009') \n 新行(换行)符 (' ') \r 回车符 (' ') \f 换页符 ('\u000C') \a 报警
* (bell) 符 ('\u0007') \e 转义符 ('\u001B') \cx 空格(\u0020)对应于 x 的控制符
*
* @param str
* @return
* @data:2015-6-30
*/
/** The encrypted_field_index. 需要加密的字段下标*/
private final String encrypted_field_index;
public static String UnicodeToString(String str) {
Pattern pattern = Pattern.compile("(\\\\u(\\p{XDigit}{4}))");
Matcher matcher = pattern.matcher(str);
char ch;
while (matcher.find()) {
ch = (char) Integer.parseInt(matcher.group(2), 16);
str = str.replace(matcher.group(1), ch + "");
}
return str;
}
/*
* @see org.apache.flume.interceptor.Interceptor#intercept(org.apache.flume.Event)
* 单个event拦截逻辑
*/
public Event intercept(Event event) {
if (event == null) {
return null;
}
try {
String line = new String(event.getBody(), Charsets.UTF_8);
String[] fields_spilts = line.split(fields_separator);
String[] indexs_split = indexs.split(indexs_separator);
String newLine="";
for (int i = 0; i < indexs_split.length; i++) {
int parseInt = Integer.parseInt(indexs_split[i]);
//对加密字段进行加密
if(!"".equals(encrypted_field_index)&&encrypted_field_index.equals(indexs_split[i])){
newLine+=StringUtils.GetMD5Code(fields_spilts[parseInt]);
}else{
newLine+=fields_spilts[parseInt];
}
if(i!=indexs_split.length-1){
newLine+=fields_separator;
}
}
event.setBody(newLine.getBytes(Charsets.UTF_8));
return event;
} catch (Exception e) {
return event;
}
}
/*
* @see org.apache.flume.interceptor.Interceptor#intercept(java.util.List)
* 批量event拦截逻辑
*/
public List intercept(List events) {
List out = new ArrayList();
for (Event event : events) {
Event outEvent = intercept(event);
if (outEvent != null) {
out.add(outEvent);
}
}
return out;
}
/*
* @see org.apache.flume.interceptor.Interceptor#initialize()
*/
public void initialize() {
// TODO Auto-generated method stub
}
/*
* @see org.apache.flume.interceptor.Interceptor#close()
*/
public void close() {
// TODO Auto-generated method stub
}
/**
* 相当于自定义Interceptor的工厂类
* 在flume采集配置文件中通过制定该Builder来创建Interceptor对象
* 可以在Builder中获取、解析flume采集配置文件中的拦截器Interceptor的自定义参数:
* 字段分隔符,字段下标,下标分隔符、加密字段下标 ...等
* @author
*
*/
public static class Builder implements Interceptor.Builder {
/** The fields_separator.指明每一行字段的分隔符 */
private String fields_separator;
/** The indexs.通过分隔符分割后,指明需要那列的字段 下标*/
private String indexs;
/** The indexs_separator. 多个下标下标的分隔符*/
private String indexs_separator;
/** The encrypted_field. 需要加密的字段下标*/
private String encrypted_field_index;
/*
* @see org.apache.flume.conf.Configurable#configure(org.apache.flume.Context)
*/
public void configure(Context context) {
fields_separator = context.getString(FIELD_SEPARATOR, DEFAULT_FIELD_SEPARATOR);
indexs = context.getString(INDEXS, DEFAULT_INDEXS);
indexs_separator = context.getString(INDEXS_SEPARATOR, DEFAULT_INDEXS_SEPARATOR);
encrypted_field_index= context.getString(ENCRYPTED_FIELD_INDEX, DEFAULT_ENCRYPTED_FIELD_INDEX);
}
/*
* @see org.apache.flume.interceptor.Interceptor.Builder#build()
*/
public Interceptor build() {
return new CustomParameterInterceptor(fields_separator, indexs, indexs_separator,encrypted_field_index);
}
}
/**
* 常量
*
*/
public static class Constants {
/** The Constant FIELD_SEPARATOR. */
public static final String FIELD_SEPARATOR = "fields_separator";
/** The Constant DEFAULT_FIELD_SEPARATOR. */
public static final String DEFAULT_FIELD_SEPARATOR =" ";
/** The Constant INDEXS. */
public static final String INDEXS = "indexs";
/** The Constant DEFAULT_INDEXS. */
public static final String DEFAULT_INDEXS = "0";
/** The Constant INDEXS_SEPARATOR. */
public static final String INDEXS_SEPARATOR = "indexs_separator";
/** The Constant DEFAULT_INDEXS_SEPARATOR. */
public static final String DEFAULT_INDEXS_SEPARATOR = ",";
/** The Constant ENCRYPTED_FIELD_INDEX. */
public static final String ENCRYPTED_FIELD_INDEX = "encrypted_field_index";
/** The Constant DEFAUL_TENCRYPTED_FIELD_INDEX. */
public static final String DEFAULT_ENCRYPTED_FIELD_INDEX = "";
/** The Constant PROCESSTIME. */
public static final String PROCESSTIME = "processTime";
/** The Constant PROCESSTIME. */
public static final String DEFAULT_PROCESSTIME = "a";
}
/**
* 工具类:字符串md5加密
*/
public static class StringUtils {
// 全局数组
private final static String[] strDigits = { "0", "1", "2", "3", "4", "5",
"6", "7", "8", "9", "a", "b", "c", "d", "e", "f" };
// 返回形式为数字跟字符串
private static String byteToArrayString(byte bByte) {
int iRet = bByte;
// System.out.println("iRet="+iRet);
if (iRet < 0) {
iRet += 256;
}
int iD1 = iRet / 16;
int iD2 = iRet % 16;
return strDigits[iD1] + strDigits[iD2];
}
// 返回形式只为数字
private static String byteToNum(byte bByte) {
int iRet = bByte;
System.out.println("iRet1=" + iRet);
if (iRet < 0) {
iRet += 256;
}
return String.valueOf(iRet);
}
// 转换字节数组为16进制字串
private static String byteToString(byte[] bByte) {
StringBuffer sBuffer = new StringBuffer();
for (int i = 0; i < bByte.length; i++) {
sBuffer.append(byteToArrayString(bByte[i]));
}
return sBuffer.toString();
}
public static String GetMD5Code(String strObj) {
String resultString = null;
try {
resultString = new String(strObj);
MessageDigest md = MessageDigest.getInstance("MD5");
// md.digest() 该函数返回值为存放哈希值结果的byte数组
resultString = byteToString(md.digest(strObj.getBytes()));
} catch (NoSuchAlgorithmException ex) {
ex.printStackTrace();
}
return resultString;
}
}
}
第三台机器开发flume的配置文件
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
vim spool-interceptor-hdfs.conf
a1.channels = c1
a1.sources = r1
a1.sinks = s1
#channel
a1.channels.c1.type = memory
a1.channels.c1.capacity=100000
a1.channels.c1.transactionCapacity=50000
#source
a1.sources.r1.channels = c1
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /export/servers/intercept
a1.sources.r1.batchSize= 50
a1.sources.r1.inputCharset = UTF-8
a1.sources.r1.interceptors =i1 i2
a1.sources.r1.interceptors.i1.type =cn.itcast.iterceptor.CustomParameterInterceptor$Builder
a1.sources.r1.interceptors.i1.fields_separator=\\u0009
a1.sources.r1.interceptors.i1.indexs =0,1,3,5,6
a1.sources.r1.interceptors.i1.indexs_separator =\\u002c
a1.sources.r1.interceptors.i1.encrypted_field_index =0
a1.sources.r1.interceptors.i2.type = org.apache.flume.interceptor.TimestampInterceptor$Builder
#sink
a1.sinks.s1.channel = c1
a1.sinks.s1.type = hdfs
a1.sinks.s1.hdfs.path =hdfs://192.168.52.100:8020/flume/intercept/%Y%m%d
a1.sinks.s1.hdfs.filePrefix = event
a1.sinks.s1.hdfs.fileSuffix = .log
a1.sinks.s1.hdfs.rollSize = 10485760
a1.sinks.s1.hdfs.rollInterval =20
a1.sinks.s1.hdfs.rollCount = 0
a1.sinks.s1.hdfs.batchSize = 1500
a1.sinks.s1.hdfs.round = true
a1.sinks.s1.hdfs.roundUnit = minute
a1.sinks.s1.hdfs.threadsPoolSize = 25
a1.sinks.s1.hdfs.useLocalTimeStamp = true
a1.sinks.s1.hdfs.minBlockReplicas = 1
a1.sinks.s1.hdfs.fileType =DataStream
a1.sinks.s1.hdfs.writeFormat = Text
a1.sinks.s1.hdfs.callTimeout = 60000
a1.sinks.s1.hdfs.idleTimeout =60
13601249301 100 200 300 400 500 600 700
13601249302 100 200 300 400 500 600 700
13601249303 100 200 300 400 500 600 700
13601249304 100 200 300 400 500 600 700
13601249305 100 200 300 400 500 600 700
13601249306 100 200 300 400 500 600 700
13601249307 100 200 300 400 500 600 700
13601249308 100 200 300 400 500 600 700
13601249309 100 200 300 400 500 600 700
13601249310 100 200 300 400 500 600 700
13601249311 100 200 300 400 500 600 700
13601249312 100 200 300 400 500 600 700
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin
bin/flume-ng agent -c conf -f conf/spool-interceptor-hdfs.conf -name a1 -Dflume.root.logger=DEBUG,console