斐波那契堆和二叉堆

实验目标

实现斐波拉契堆并与二叉堆比较效率(Dijkstra算法)

设计思路

二叉堆

数据存储设计

  • 用数组来存储堆中元素
  • 数组下标为元素的序号
    • 左儿子为2*i+1,右儿子为2*i+2

template <class T>
class MinHeap{
     
    private:
        T *mHeap;        // 数据
        int mCapacity;    // 总的容量
        int mSize;        // 实际容量

    private:
        // 最小堆的向下调整算法
        void filterdown(int start, int end);
        // 最小堆的向上调整算法(从start开始向上直到0,调整堆)
        void filterup(int start);
    public:
        MinHeap();
        MinHeap(int capacity);
        ~MinHeap();

        int getIndex(T data);// 返回data在二叉堆中的索引
        int remove(T data);// 即extract_min
        int insert(T data);// 将data插入到二叉堆中
        int decrease_key(T pos,T data);
        int empty();
        T find_min();
};

函数实现

  • decrease_key

    • 该元素存在的情况下,将元素key值减小,再从该元素开始向上调整(调用filterup)
    template <class T>
    int MinHeap<T>::decrease_key(T pos,T data){
           
        int index = getIndex(pos);
        if(index == -1)return -1;
        if(mHeap[index] <= data)return -1;
        mHeap[index] = data;
        filterup(index);
        return 0;
    }
    
  • filterdown

    • 根据左右儿子的有无分类讨论
      • 右儿子不存在时,只比较左儿子
      • 右儿子存在时,选左右儿子中最小的,与父节点比较判断是否需要交换并进一步向下调整
    template <class T>
    void MinHeap<T>::filterdown(int start, int end)
    {
           
        T temp;
        int left = 2*start + 1;
        int right = 2*start + 2;
        if(left > end)return;
        if(right > end)
        {
           
            if(mHeap[left] < mHeap[start])
            {
           
                temp = mHeap[left];
                mHeap[left] = mHeap[start];
                mHeap[start] = temp;
                filterdown(left,end);
                return;
            }else{
           
                return;
            }
        }else{
           
            if(mHeap[right] <= mHeap[left]&&mHeap[right] < mHeap[start])
            {
           
                temp = mHeap[right];
                mHeap[right] = mHeap[start];
                mHeap[start] = temp;
                filterdown(right,end);
                return;
            }else if(mHeap[left] < mHeap[right]&&mHeap[left] < mHeap[start])
            {
           
                temp = mHeap[left];
                mHeap[left] = mHeap[start];
                mHeap[start] = temp;
                filterdown(left,end);
                return;
            }
            else
            {
           
                return;
            }
            
        } 
    }
    
  • filterup

    • 不断的比较当前节点与其父节点的key值大小来判断是否需要调整,直到当前节点key值>=父节点的key值为止或者是当前节点是root
    template <class T>
    void MinHeap<T>::filterup(int start){
           
        int father = (start - 1 ) / 2;
        while(father >= 0 && mHeap[father] > mHeap[start] )
        {
           
            T temp = mHeap[father];
            mHeap[father] = mHeap[start];
            mHeap[start] = temp;
            start = father;
            father = (start - 1) / 2;
        }
    }
    

斐波那契堆

基本按照给的模板完成,略作修改,将map mp换作vectormp;

并在一些函数的参数中作了修改。

节点设置

struct Node {
     
		T key;
		int degree;
		bool mark;
		Node *p, *child, *left, *right;
		Node(T k) : key(k), degree(0), mark(false) {
     
			p = child = nullptr;
			left = right = this;
		}
	};

数据存储

用Node* Min来寻找根链表

用vectormp来保证在O(1)时间内寻找到某节点

n记录节点个数

template <class T>
class Fibonacci_Heap {
     
private:
	struct Node {
     
		T key;
		int degree;
		bool mark;
		Node *p, *child, *left, *right;
		Node(T k) : key(k), degree(0), mark(false) {
     
			p = child = nullptr;
			left = right = this;
		}
	};

	Node *Min;
	int n;
	//map mp;
    vector<Node*>mp;
	void Del_Tree(Node *root);
	void Consolidate();
	void Link(Node *y, Node *x);
	void Cut(Node *x, Node *y);
	void Cascading_Cut(Node *y);
public:
	Fibonacci_Heap();
	~Fibonacci_Heap();

	void Push(int id,T x);
	bool Empty();
	T Top();
	void Pop();
	void Decrease_Key(int id, T k);
};

函数实现

  • Push
    • 将x放在mp中,为了以后实现decrease_key
    • 将x插入到根链表中
    • 更新Min
template <class T>
void Fibonacci_Heap<T>::Push(int id,T x) {
     
    while(id >= mp.size()){
     
        mp.push_back(nullptr);
    }
    Node* point = new Node(x);
    mp[id] = point;
    
    if(n == 0){
     
        Min = point;
    }else{
     
        Node* tmp = Min->left;
        tmp->right = point;
        Min->left = point;
        point->left = tmp;
        point->right = Min;
        if(Min->key > point->key)
        {
     
            Min = point;
        }
    }
    n++;
}
  • Pop

    • 先判断是否有最小节点可以pop
    • 只有一个节点,pop掉它就好
    • 有多个节点,pop以后要维护斐波那契堆堆性质
      • 将Min的每一个子节点添加到根链表中
      • 将Min移除
      • 重置Min节点
      • 调用consolidate
    template <class T>
    void Fibonacci_Heap<T>::Pop() {
           
       
        if(n == 0) return;
        n--;
        if(n == 0) {
           
            delete Min;
            Min = nullptr;
            return;
        }
        Node *tmp = Min -> child;
        vector <Node *> chdlist;  
        if(tmp != nullptr)
            do{
           
                chdlist.push_back(tmp);
                tmp = tmp -> right;
            }while(tmp != Min -> child);
        for(int i = 0; i < chdlist.size(); i++){
           
            Node *iterat = chdlist[i];
            Node *Mleft = Min -> left;
            iterat -> p = nullptr;
            Mleft -> right = iterat;    Min -> left = iterat;
            iterat -> left = Mleft;     iterat -> right = Min;
        }
        Node *l = Min -> left;
        Node *r = Min -> right;
        l -> right = r;
        r -> left = l;
        delete Min;
        Min = l;
        Consolidate();
    }
    
  • Decrease_key

    • 判断是否可以使用此操作
    • 调用cut和cascading-cut来维护斐波那契堆的性质
    • 更新Min
    template<class T>
    void Fibonacci_Heap<T>::Decrease_Key(int id, T k) {
           
    
        if(id>=mp.size()||mp[id] == nullptr){
           
            cout<<"The target  doesn't exit"<<endl;
            return;
        }
        if(mp[id]->key < k){
           
            cout<<"The key of target  is higher than you thought"<<endl;return;
        }
        Node* target = mp[id];
        target->key = k;
        Node* fa = target->p;
        if(fa!=nullptr && target->key < fa->key)
        {
           
            Cut(target,fa);
            Cascading_Cut(fa);
        }
        if(target->key < Min->key)
            Min = target;
    }
    
    
  • Consolidate

    • 用vectorA来按照度的大小存储根节点中的元素

      • 几处的while循环是为了保证vector足够大,能够满足度数不会大于A.size()

        while(cur->degree+1 > A.size())
                {
                    A.push_back(nullptr); }
        
        
    • 将根链表中每一个元素取出,放在root_listl里面

    • 用for循环实现 对每一个root_list中元素进行判断:是否有元素具有与它相同的degree

      • 若具有相同的degree,合并两个元素,调用Link将key值较小的节点插在Key值较大节点的子链表中;插入后可能新生成的节点与其他节点degree相同,故重复此过程直到不相同为止。(while实现)
    • 用A中的元素创建一个新的根链表

    template <class T>
    void Fibonacci_Heap<T>::Consolidate() {
           
        //cout<<"consolidate"<
        vector<Node*>root_list;
        vector<Node*>A;
        Node* cur = Min->right;
        root_list.push_back(Min);
        while(cur != Min)
        {
           
            while(cur->degree+1 > A.size())
            {
            A.push_back(nullptr); }
            root_list.push_back(cur);
            cur = cur->right;
        }
        
        for(int i = 0;i < root_list.size();i++)
        {
           
            Node* x = root_list[i];
            int d = x->degree;
            while(d + 10>A.size()){
           A.push_back(nullptr);}
            //cout<
            //cout<
            while(A[d] != nullptr)
            {
              
                Node* y = A[d];
                if(x->key > y->key)
                {
           
                    Node* swap = x;
                    x = y;
                    y = swap;
                }
                Link(y,x);
                A[d] = nullptr;
                d++;
            }
            while(d+5 > A.size()){
            A.push_back(nullptr);}
            A[d] = x;
        }
        Min = nullptr;
        for(int j = 0;j < A.size();j++)
        {
           
            if(A[j]!=nullptr){
           
                if(Min == nullptr)
                {
           
                    Min = A[j];
                    Min->left = Min;Min->right = Min;
                }
                else
                {
           
                    
                    Node* le = Min->left;
                    le -> right = A[j];
                    Min -> left = A[j];
                    A[j]->right = Min;
                    A[j]->left = le;
                    if(Min->key > A[j]->key)Min = A[j];
                }
                
            }
        }
    }
    
    
  • Link

    • 将y从根链表中移除
    • 将y添加到x的子节点中,跟新x的degree
    • 置y的mark为false
    template <class T>
    void Fibonacci_Heap<T>::Link(Node *y, Node *x) {
           
        //remove y from the root list
        Node* l = y->left;
        Node* r = y->right;
        l->right = r;
        r->left = l;
    
        //make y a child of x, incrementing x.degree
        x->degree++;
        y->p = x;
        y->mark = false;
        if(x->child != nullptr){
           
            Node* t = x->child->right;
            t->left = y;
            y->left = x->child;
            y->right = t;
            x->child->right = y;
        }else
        {
           
            x->child = y;
            y->left = y;y->right = y;
        }
        
    }
    
    
  • Cut

    • 将x从y的子链表中移除,更新y的degree
    • 将x添加到根链表中
    • 跟新x的p和mark
    template <class T>
    void Fibonacci_Heap<T>::Cut(Node *x, Node *y) {
           
        y->degree--;
        
    
        //remove x from child list of y
        Node* tmp = x;
        if(y->degree == 0){
           y->child = nullptr;}
        else{
           
            if(y->child == x)
                y->child = x->right; 
            Node* left = x->left;
            Node* right = x->right;
            right->left = left;
            left->right = right;
            
        }
    
        //add x to the root list
        x->p = nullptr;
        x->mark = false;
        Node* temp = Min->left;
            temp->right = x;
            Min->left = x;
            x->left = temp;
            x->right = Min;
    }
    
    
  • Cascading_Cut

    • y的mark未被标记
      • 标记y
    • y的mark被标记
      • 递归查看y的父节点
        • cut(y,z)
        • cascadign-cut(z)
    template <class T>
    void Fibonacci_Heap<T>::Cascading_Cut(Node *y) {
           
        Node* z = y->p;
        if(z!=nullptr){
           
            if(y->mark == false)
            {
           
                y->mark = true;
            }else
            {
           
                Cut(y,z);
                Cascading_Cut(z);
            }
            
        }
    
    

总结

斐波那契堆的时间复杂度小于二项堆的时间复杂度。但是斐波那契堆的编程复杂性远高于二项堆的编程复杂性。

完整代码

#ifndef BINARY_HEAP_H
#define BINARY_HEAP_H


#include 
#include 
using namespace std;

template <class T>
class MinHeap{
     
    private:
        T *mHeap;        // 数据
        int mCapacity;    // 总的容量
        int mSize;        // 实际容量

    private:
        // 最小堆的向下调整算法
        void filterdown(int start, int end);
        // 最小堆的向上调整算法(从start开始向上直到0,调整堆)
        void filterup(int start);
    public:
        MinHeap();
        MinHeap(int capacity);
        ~MinHeap();

        int getIndex(T data);// 返回data在二叉堆中的索引
        int remove(T data);// 即extract_min
        int insert(T data);// 将data插入到二叉堆中
        int decrease_key(T pos,T data);
        int empty();
        T find_min();
};

/* 
 * 构造函数
 */
template <class T>
MinHeap<T>::MinHeap()
{
     
    new (this)MinHeap(100000);
}

template <class T>
MinHeap<T>::MinHeap(int capacity){
     
    mSize = 0;
    mCapacity = capacity;
    mHeap = new T[mCapacity];
}
/* 
 * 析构函数
 */
template <class T>
MinHeap<T>::~MinHeap() 
{
     
    mSize = 0;
    mCapacity = 0;
    delete[] mHeap;
}

/* 
 * 返回data在二叉堆中的索引
 *
 * 返回值:
 *     存在 -- 返回data在数组中的索引
 *     不存在 -- -1
 */
template <class T>
int MinHeap<T>::getIndex(T data)
{
     
    for(int i=0; i<mSize; i++)
        if (data == mHeap[i])
            return i;

    return -1;
}

/* 
 * 最小堆的向下调整算法
 *
 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
 *
 * 参数说明:
 *     start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
 *     end   -- 截至范围(一般为数组中最后一个元素的索引)
 */
template <class T>
void MinHeap<T>::filterdown(int start, int end)
{
     
    T temp;
    int left = 2*start + 1;
    int right = 2*start + 2;
    if(left > end)return;
    if(right > end)
    {
     
        if(mHeap[left] < mHeap[start])
        {
     
            temp = mHeap[left];
            mHeap[left] = mHeap[start];
            mHeap[start] = temp;
            filterdown(left,end);
            return;
        }else{
     
            return;
        }
    }else{
     
        if(mHeap[right] <= mHeap[left]&&mHeap[right] < mHeap[start])
        {
     
            temp = mHeap[right];
            mHeap[right] = mHeap[start];
            mHeap[start] = temp;
            filterdown(right,end);
            return;
        }else if(mHeap[left] < mHeap[right]&&mHeap[left] < mHeap[start])
        {
     
            temp = mHeap[left];
            mHeap[left] = mHeap[start];
            mHeap[start] = temp;
            filterdown(left,end);
            return;
        }
        else
        {
     
            return;
        }
        
    } 
}
 
/*
 * 删除最小堆中的data
 *
 * 返回值:
 *      0,成功
 *     -1,失败
 */
template <class T>
int MinHeap<T>::remove(T data)
{
     
    if(getIndex(data) == -1)return -1;
    mHeap[0] = mHeap[--mSize];
    filterdown(0,mSize-1);
    return 0;
}

/*
 * 最小堆的向上调整算法(从start开始向上直到0,调整堆)
 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
 * 参数说明:start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引)
 */
template <class T>
void MinHeap<T>::filterup(int start){
     
    int father = (start - 1 ) / 2;
    while(father >= 0 && mHeap[father] > mHeap[start] )
    {
     
        T temp = mHeap[father];
        mHeap[father] = mHeap[start];
        mHeap[start] = temp;
        start = father;
        father = (start - 1) / 2;
    }
}
  
/* 
 * 将data插入到二叉堆中
 * 返回值:
 *     0,表示成功
 *    -1,表示失败
 */
template <class T>
int MinHeap<T>::insert(T data){
     
    if(mSize == mCapacity)return -1;
    mHeap[mSize] = data;
    filterup(mSize++);
    return 0;
}


template <class T>
int MinHeap<T>::decrease_key(T pos,T data){
     
    int index = getIndex(pos);
    if(index == -1)return -1;
    if(mHeap[index] <= data)return -1;
    mHeap[index] = data;
    filterup(index);
    return 0;
}


template <class T>
T MinHeap<T>::find_min(){
     
    return mHeap[0];
}


template <class T>
int MinHeap<T>::empty(){
     
    if(mSize == 0)return 1;
    else return 0;
}

#endif


fibonnaci

#pragma once

#include 
#include 
#include 
#include 
#include 
using namespace std;

template <class T>
class Fibonacci_Heap {
     
private:
	struct Node {
     
		T key;
		int degree;
		bool mark;
		Node *p, *child, *left, *right;
		Node(T k) : key(k), degree(0), mark(false) {
     
			p = child = nullptr;
			left = right = this;
		}
	};

	Node *Min;
	int n;
	//map mp;
    vector<Node*>mp;
	void Del_Tree(Node *root);
	void Consolidate();
	void Link(Node *y, Node *x);
	void Cut(Node *x, Node *y);
	void Cascading_Cut(Node *y);
public:
	Fibonacci_Heap();
	~Fibonacci_Heap();

	void Push(int id,T x);
	bool Empty();
	T Top();
	void Pop();
	void Decrease_Key(int id, T k);
};

template <class T>
Fibonacci_Heap<T>::Fibonacci_Heap() {
     
    Min = nullptr;
    n = 0;
}

template <class T>
void Fibonacci_Heap<T>::Del_Tree(Node *root) {
     
    if(root -> child != nullptr) {
     
        Node *ptr = root -> child;
        do {
     
            Del_Tree(ptr);
            ptr = ptr -> right;
        } while(ptr != root -> child);
    }
    delete root;
}

template <class T>
Fibonacci_Heap<T>::~Fibonacci_Heap() {
     
    mp.clear();
    Node *ptr = Min;
    if(ptr == nullptr)return;
    do {
     
        Del_Tree(ptr);
        ptr = ptr -> right;
    } while(ptr != Min);
}

template <class T>
void Fibonacci_Heap<T>::Push(int id,T x) {
     
    while(id >= mp.size()){
     
        mp.push_back(nullptr);
    }
    Node* point = new Node(x);
    mp[id] = point;
    
    if(n == 0){
     
        Min = point;
    }else{
     
        Node* tmp = Min->left;
        tmp->right = point;
        Min->left = point;
        point->left = tmp;
        point->right = Min;
        if(Min->key > point->key)
        {
     
            Min = point;
        }
    }
    n++;
}

template <class T>
bool Fibonacci_Heap<T>::Empty() {
     
    if(n == 0)return true;
    else return false;
    
}

template <class T>
T Fibonacci_Heap<T>::Top() {
     
    return Min->key;
    
}

template <class T>
void Fibonacci_Heap<T>::Pop() {
     
   
    if(n == 0) return;
    n--;
    if(n == 0) {
     
        delete Min;
        Min = nullptr;
        return;
    }
    Node *tmp = Min -> child;
    vector <Node *> chdlist;  
    if(tmp != nullptr)
        do{
     
            chdlist.push_back(tmp);
            tmp = tmp -> right;
        }while(tmp != Min -> child);
    for(int i = 0; i < chdlist.size(); i++){
     
        Node *iterat = chdlist[i];
        Node *Mleft = Min -> left;
        iterat -> p = nullptr;
        Mleft -> right = iterat;    Min -> left = iterat;
        iterat -> left = Mleft;     iterat -> right = Min;
    }
    Node *l = Min -> left;
    Node *r = Min -> right;
    l -> right = r;
    r -> left = l;
    delete Min;
    Min = l;
    Consolidate();
}

template <class T>
void Fibonacci_Heap<T>::Consolidate() {
     
    //cout<<"consolidate"<
    vector<Node*>root_list;
    vector<Node*>A;
    Node* cur = Min->right;
    root_list.push_back(Min);
    while(cur != Min)
    {
     
        while(cur->degree+1 > A.size())
        {
      A.push_back(nullptr); }
        root_list.push_back(cur);
        cur = cur->right;
    }
    
    for(int i = 0;i < root_list.size();i++)
    {
     
        Node* x = root_list[i];
        int d = x->degree;
        while(d + 10>A.size()){
     A.push_back(nullptr);}
        //cout<
        //cout<
        while(A[d] != nullptr)
        {
        
            Node* y = A[d];
            if(x->key > y->key)
            {
     
                Node* swap = x;
                x = y;
                y = swap;
            }
            Link(y,x);
            A[d] = nullptr;
            d++;
        }
        while(d+5 > A.size()){
      A.push_back(nullptr);}
        A[d] = x;
    }
    Min = nullptr;
    for(int j = 0;j < A.size();j++)
    {
     
        if(A[j]!=nullptr){
     
            if(Min == nullptr)
            {
     
                Min = A[j];
                Min->left = Min;Min->right = Min;
            }
            else
            {
     
                
                Node* le = Min->left;
                le -> right = A[j];
                Min -> left = A[j];
                A[j]->right = Min;
                A[j]->left = le;
                if(Min->key > A[j]->key)Min = A[j];
            }
            
        }
    }
}

template <class T>
void Fibonacci_Heap<T>::Link(Node *y, Node *x) {
     
    //remove y from the root list
    Node* l = y->left;
    Node* r = y->right;
    l->right = r;
    r->left = l;

    //make y a child of x, incrementing x.degree
    x->degree++;
    y->p = x;
    y->mark = false;
    if(x->child != nullptr){
     
        Node* t = x->child->right;
        t->left = y;
        y->left = x->child;
        y->right = t;
        x->child->right = y;
    }else
    {
     
        x->child = y;
        y->left = y;y->right = y;
    }
    
}

template<class T>
void Fibonacci_Heap<T>::Decrease_Key(int id, T k) {
     

    if(id>=mp.size()||mp[id] == nullptr){
     
        cout<<"The target  doesn't exit"<<endl;
        return;
    }
    if(mp[id]->key < k){
     
        cout<<"The key of target  is higher than you thought"<<endl;return;
    }
    Node* target = mp[id];
    target->key = k;
    Node* fa = target->p;
    if(fa!=nullptr && target->key < fa->key)
    {
     
        Cut(target,fa);
        Cascading_Cut(fa);
    }
    if(target->key < Min->key)
        Min = target;
}

template <class T>
void Fibonacci_Heap<T>::Cut(Node *x, Node *y) {
     
    y->degree--;
    

    //remove x from child list of y
    Node* tmp = x;
    if(y->degree == 0){
     y->child = nullptr;}
    else{
     
        if(y->child == x)
            y->child = x->right; 
        Node* left = x->left;
        Node* right = x->right;
        right->left = left;
        left->right = right;
        
    }

    //add x to the root list
    x->p = nullptr;
    x->mark = false;
    Node* temp = Min->left;
        temp->right = x;
        Min->left = x;
        x->left = temp;
        x->right = Min;
}

template <class T>
void Fibonacci_Heap<T>::Cascading_Cut(Node *y) {
     
    Node* z = y->p;
    if(z!=nullptr){
     
        if(y->mark == false)
        {
     
            y->mark = true;
        }else
        {
     
            Cut(y,z);
            Cascading_Cut(z);
        }
        
    }
}


你可能感兴趣的:(c++,数据结构)