ELK 日志分析实例
一、ELK-web日志分析
二、ELK-MySQL 慢查询日志分析
三、ELK-SSH登陆日志分析
四、ELK-vsftpd 日志分析
一、ELK-web日志分析
通过logstash grok正则将web日志过滤出来,输出到Elasticsearch 搜索引擎里,通过Kibana前端展示。
1.1、创建logstash grok 过滤规则
#cat ./logstahs/patterns/nginx
NGINXACCESS %{IPORHOST:remote_addr} – – \[%{HTTPDATE:time_local}\] "%{WORD:method} %{URIPATHPARAM:request} HTTP/%{NUMBER:httpversion}" %{INT:status} %{INT:body_bytes_sent} %{QS:http_referer} %{QS:http_user_agent}
1.2、创建logstash web日志配置文件
#cat ./logstash/conf/ngx_log.conf
input {
file {
type => "nginx_log"
path => "/opt/nginx/logs/access.log"
}
}
filter {
if [type] == "nginx_log" {
grok {
match => { "message" => "%{NGINXACCESS}" }
}
geoip {
source => "remote_addr"
target => "geoip"
database => "/opt/logstash-2.0.0/conf/GeoLiteCity.dat"
add_field => [ "[geoip][coordinates]", "%{[geoip][longitude]}" ]
add_field => [ "[geoip][coordinates]", "%{[geoip][latitude]}" ]
}
mutate {
convert => [ "[geoip][coordinates]","float", "body_bytes_sent","float", \
"body_bytes_sent.raw","float"]
}
}
}
output {
stdout { codec => rubydebug }
elasticsearch {
hosts => "elk.test.com:9200"
index => "ngx_log-%{+YYYY.MM}"
}
}
1.3、创建Kibana图形
统计httpcode状态码
选择【Visualize】菜单,选择 【Pie chart】选项。字段选择status.raw,如下图所示:
统计访问前50 IP
选择【Visualize】菜单,选择 【Vertical bar chart】选项。字段选择remote_addr.raw,如下图所示:
统计 403-405 状态码
选择【Visualize】菜单,选择 【Line chart】选项。字段选择status.raw,如下图所示:
其它图形统计,就不详细举例了。
详细图形展示如下:
二、ELK-MySQL 慢查询日志分析
2.1、创建logstash grok 过滤规则
#cat ./logstahs/patterns/mysql_slow
MYSQLSLOW "# User@Host: %{WORD:user}\[%{WORD}\] @ (%{HOST:client_hostname}|) \[(%{IP:client_ip}|)\]",
"# Thread_id: %{NUMBER:thread_id:int} \s*Schema: (%{WORD:schema}| ) \s*Last_errno: \
%{NUMBER:last_errno:int} \s*Killed: %{NUMBER:killed:int}",
"# Query_time: %{NUMBER:query_time:float} \s*Lock_time: %{NUMBER:lock_time:float} \
\s*Rows_sent: %{NUMBER:rows_sent:int} \s*Rows_examined: %{NUMBER:rows_examined:int}",
"# Bytes_sent: %{NUMBER:bytes_sent:int}",
"(?m)SET timestamp=%{NUMBER:timestamp};%{GREEDYDATA:mysql_query}"
2.2、创建logstash MySQL-Slow慢查询配置文件
#cat ./logstash/conf/MySQL-Slow.conf
input {
file {
type => "mysql-slow"
path => "/var/log/mysql_slow_log.log"
}
}
filter {
if [type] == "mysql-slow" {
multiline {
pattern => "^#|^SET"
negate => true
what => "previous"
}
grok {
match => { "message" => "%{MYSQLSLOW}" }
}
mutate {
gsub => [ "mysql_query", "\n", " " ]
gsub => [ "mysql_query", " ", " " ]
add_tag => "mutated_mysql_query"
}
multiline {
pattern => "(# User|# Thread|# Query|# Time|# Bytes)"
negate => false
what => "next"
}
date {
match => [ "timestamp","UNIX" ]
}
mutate {
remove_field => [ "timestamp" ]
}
}
}
output {
stdout { codec => rubydebug }
elasticsearch {
hosts => "elk.test.com:9200"
index => "mysql_slow_log-%{+YYYY.MM}"
}
}
2.3、详细图形展示如下:
三、ELK-SSH登陆日志分析
3.1、创建logstash grok 过滤规则
#cat ./logstahs/patterns/ssh
SECURELOG %{WORD:program}\[%{DATA:pid}\]: %{WORD:status} password for ?(invalid user)? %{WORD:USER} from %{DATA:IP} port
SYSLOGPAMSESSION %{SYSLOGBASE} (?=%{GREEDYDATA:message})%{WORD:pam_module}\(%{DATA:pam_caller}\): session %{WORD:pam_session_state} for user %{USERNAME:username}(?: by %{GREEDYDATA:pam_by})?
SYSLOGBASE2 (?:%{SYSLOGTIMESTAMP:timestamp}|%{TIMESTAMP_ISO8601:timestamp8601}) (?:%{SYSLOGFACILITY} )?%{SYSLOGHOST:logsource} %{SYSLOGPROG}:
3.2、创建logstash ssh配置文件
#cat ./logstash/conf/ssh.conf
input {
file {
type => "seclog"
path => "/var/log/secure"
}
}
filter {
if [type] == "seclog" {
grok {
match => { "message" => "%{SYSLOGPAMSESSION}" }
match => { "message" => "%{SECURELOG}" }
match => { "message" => "%{SYSLOGBASE2}" }
}
geoip {
source => "IP"
fields => ["city_name"]
database => "/opt/logstash-2.0.0/conf/GeoLiteCity.dat"
}
if ([status] == "Accepted") {
mutate {
add_tag => ["Success"]
}
}
else if ([status] == "Failed") {
mutate {
add_tag => ["Failed"]
}
}
}
output {
stdout { codec => rubydebug }
elasticsearch {
hosts => "elk.test.com:9200"
index => "sshd_log-%{+YYYY.MM}"
}
}
PS:添加状态标签,便于Kibana 统计
if ([status] == "Accepted") { #判断字段[status]值,匹配[Accepted]
mutate {
add_tag => ["Success"] #添加标签[Success]
}
}
else if ([status] == "Failed") { #判断字段[status]值,匹配[Failed]
mutate {
add_tag => ["Failed"] #添加标签[Failed]
}
}
3.3、详细图形展示如下:
四、ELK-vsftpd 日志分析
4.1、创建logstash grok 过滤规则
#cat ./logstahs/patterns/vsftpd
VSFTPDCONNECT \[pid %{WORD:pid}\] %{WORD:action}: Client \"%{DATA:IP}\"
VSFTPDLOGIN \[pid %{WORD:pid}\] \[%{WORD:user}\] %{WORD:status} %{WORD:action}: Client \"%{DATA:IP}\"VSFTPDACTION \[pid %{DATA:pid}\] \[%{DATA:user}\] %{WORD:status} %{WORD:action}: Client \"%{DATA:IP}\", \"%{DATA:file}\", %{DATA:bytes} bytes, %{DATA:Kbyte_sec}Kbyte/sec
4.2、创建logstash vsftpd配置文件
#cat ./logstash/conf/vsftpd.conf
input {
file {
type => "vsftpd_log"
path => "/var/log/vsftpd.log"
}
}
filter {
if [type] == "vsftpd_log" {
grok {
match => { "message" => "%{VSFTPDACTION}" }
match => { "message" => "%{VSFTPDLOGIN}" }
match => { "message" => "%{VSFTPDCONNECT}" }
}
}
}
output {
stdout { codec => rubydebug }
elasticsearch {
hosts => "elk.test.com:9200"
index => "vsftpd_log-%{+YYYY.MM}"
}
}
4.3、详细图形展示如下:
原创文章,作者:wubin,如若转载,请注明出处:http://www.178linux.com/17395