对于nn.Sequential结构,要想获取中间网络层输出,可以使用循环遍历的方式得到。
示例
import torch
import torch.nn as nn
model = nn.Sequential(
nn.Conv2d(3, 9, 1, 1, 0, bias=False),
nn.BatchNorm2d(9),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d((1, 1)),
)
# 假如想要获得ReLu的输出
x = torch.rand([2, 3, 224, 224])
for i in range(len(model)):
x = model[i](x)
if i == 2:
ReLu_out = x
print('ReLu_out.shape:\n\t',ReLu_out.shape)
print('x.shape:\n\t',x.shape)
结果
ReLu_out.shape:
torch.Size([2, 9, 224, 224])
x.shape:
torch.Size([2, 9, 1, 1])