【POJ-3259】 Wormholes(判负环,spfa算法)

题干:

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, FF farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively: NM, and W 
Lines 2.. M+1 of each farm: Three space-separated numbers ( SET) that describe, respectively: a bidirectional path between S and E that requires Tseconds to traverse. Two fields might be connected by more than one path. 
Lines M+2.. MW+1 of each farm: Three space-separated numbers ( SET) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

Output

Lines 1.. F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

题目大意:

有若干个虫洞,给出了若干普通路径和其所用时间以及虫洞的路径和其倒回的时间,现问你能否回到出发之前的时间,注意普通路径是双向的,虫洞是单向的。

解题报告:

由题目所给信息已经可以构建一张完整的图了,然后进一步理解题目的意思其实是这张图是否存在负环,因此使用Bellman_Ford或者spfa即可。

AC代码:(邻接表储存图)(266ms)

#include
#include
#include
#include
#include
#include
#include
using namespace std;
int n,cnt;
const int MAX = 505;
const int INF = 0x3f3f3f3f;
int dis[MAX],maze[MAX][MAX],cntt[MAX],head[MAX];
bool vis[MAX];
struct Edge {
	int to,w,ne;
	Edge(){}//没有此构造函数不能写  node t  这样
	Edge(int to,int w,int ne):to(to),w(w),ne(ne){}//可以写node(pos,cost)这样

} e[200000 + 5];//数组别开小了 
void add(int u,int v,int w) {
	e[cnt].to = v;
	e[cnt].w = w;
	e[cnt].ne = head[u];
	head[u] = cnt++;
}
bool spfa(int s){
	dis[s]=0; vis[s]=1;  //队列初始化,s为起点
	int v;
	queue q;
	q.push(s);
	while (!q.empty()){   //队列非空
		v=q.front();  //取队首元素
		q.pop();
		vis[v]=0;   //释放队首结点,因为这节点可能下次用来松弛其它节点,重新入队
		for(int i=head[v]; i!=-1; i=e[i].ne)  //对所有顶点
		{
		      if (dis[e[i].to]>dis[v]+e[i].w) {  
				dis[e[i].to] = dis[v]+e[i].w;   //修改最短路
				if (vis[e[i].to]==0) {  //如果扩展结点i不在队列中,入队
					
					cntt[e[i].to]++;
					vis[e[i].to]=1;
					q.push(e[i].to);
					if(cntt[e[i].to] >=n) return true;
					
				}
		   }
		}
	}
	return false;
}

void init() {
	cnt = 0;
	memset(vis,0,sizeof(vis));
	memset(maze,0,sizeof(maze));
	memset(e,0,sizeof(e));
	memset(dis,INF,sizeof(dis));
	memset(cntt,0,sizeof(cntt));
	memset(head,-1,sizeof(head)); 
}
int main()
{
	int t;
	int M,W,u,v,w;
	cin>>t;	
	while(t--) {
		init();
		scanf("%d%d%d",&n,&M,&W);
		for(int i = 1; i<=M; i++) {
			scanf("%d%d%d",&u,&v,&w);
			add(u,v,w);add(v,u,w);
		}
		for(int i = 1; i<=W; i++) {
			scanf("%d%d%d",&u,&v,&w);
			add(u,v,-w);
		}
		cntt[1] =1;
		if(spfa(1)) printf("YES\n");
		else printf("NO\n");
		
	}
	return 0 ;
}

AC代码2:(邻接矩阵)(需要判重边!)(1079ms)

#include
#include
#include
#include
#include
#include
#include
using namespace std;
int n;
const int MAX = 505;
const int INF = 0x3f3f3f3f;
int dis[MAX],maze[MAX][MAX],cnt[MAX];
bool vis[MAX];
bool spfa(int s){
//	for(int i=0; i<=n; i++) dis[i]=99999999; //初始化每点i到s的距离
	dis[s]=0; vis[s]=1;  //队列初始化,s为起点
	int i, v;
	queue q;
	q.push(s);
	while (!q.empty()){   //队列非空
		v=q.front();  //取队首元素
		q.pop();
		vis[v]=0;   //释放队首结点,因为这节点可能下次用来松弛其它节点,重新入队
		for(i=1; i<=n; i++)  //对所有顶点
		   if (maze[v][i]!=INF && dis[i]>dis[v]+maze[v][i]){  
				dis[i] = dis[v]+maze[v][i];   //修改最短路
				if (vis[i]==0){  //如果扩展结点i不在队列中,入队
					
					cnt[i]++;
					vis[i]=1;
					q.push(i);
					if(cnt[i] >=n) return true;
					
				}
		   }
	}
	return false;
}

void init() {
	memset(vis,0,sizeof(vis));
	memset(maze,INF,sizeof(maze));
	memset(dis,INF,sizeof(dis));
	memset(cnt,0,sizeof(cnt));
}
int main()
{
	int t;
	int M,W,u,v,w;
	cin>>t;	
	while(t--) {
		init();
		scanf("%d%d%d",&n,&M,&W);
		for(int i = 1; i<=M; i++) {
			scanf("%d%d%d",&u,&v,&w);
			if(w

 AC代码3:Bellman_Ford算法(125ms)

//Bellman_Ford算法试试
#include
#include
#include
#include
using namespace std;
#define MAXN 3000*2
#define INF 0xFFFFFFF
 
int t , n , m, w;
int dis[MAXN];
struct Edge{
   int x;
   int y;
   int value;
}e[MAXN];
 
bool judge(){
     for(int i = 0 ; i < m*2+w ; i++){
        if(dis[e[i].y] > dis[e[i].x] + e[i].value)
          return false;
     }
     return true;
}
 
void Bellman_Ford(){
     dis[1] = 0;
     for(int i = 2 ; i <= n ; i++)
        dis[i] = INF;
     for(int i = 1 ; i <= n ; i++){
        for(int j = 0 ; j < m*2+w; j++){
           if(dis[e[j].y] > dis[e[j].x] + e[j].value)
             dis[e[j].y] = dis[e[j].x] + e[j].value;
        }
     }
     if(judge())
       printf("NO\n");
     else
       printf("YES\n");
}
 
int main()
{
   int uu,vv,ww,i;
   scanf("%d",&t);
   while(t--)
   {
       scanf("%d%d%d",&n,&m,&w);
       for(i=0;i

总结:

    1.脑残了吧调了一下午+一晚上bug尝试了邻接矩阵邻接表,发现是写了memset(dis,INF,sizeof(INF));这一行乐色?呵呵

    2.如果用邻接表储存这题别忘了去重一下不然会wa的,至于为什么权值为负的时候不需要判重,大概是因为这题只要是负的,都不影响结果?因为这题要看的是,是否存在负环啊。

你可能感兴趣的:(spfa算法,POJ,2018暑假,第三周,训练1)