caffe 源码学习(三) SyncedMemory 与 shared_ptr

在blob.hpp中我们会看到protected成员变量:

protected:
  shared_ptr data_;
  shared_ptr diff_;
  shared_ptr shape_data_;
  vector<int> shape_;
  int count_;
  int capacity_;

其中data_,diff_,shape_data_ 就是指向数据,梯度,和形状数据的shared_ptr指针。在这里顺便学习一下shared_ptr,主要参考http://blog.csdn.net/sndaxdrs/article/details/6175701。自己写了点代码,体会了一下。
注意,编译时:g++ shared_ptr.cpp -lboost_system

// shared_ptr.cpp
#include
#include
#include

using namespace std;
using boost::shared_ptr;

class inS
{
public:
    inS(int i, int j) : m(i), n(j) {}
    inS() {}
    void printm() { cout << "m = " << m << endl; }
    void printn() { cout << "n = " << n << endl; }
    void setm(int i) { m = i; }
    void setn(int j) { n = j; }
private:
    int m;
    int n;
};

class S
{
public:
    S() {inS1.reset(new inS(0,0));
         inS2.reset(new inS(0,0));}
    void print_inS1() { cout << "print_inS1" << endl; 
                        inS1->printm();
                        inS1->printn(); }
    void print_inS2() { cout << "print_inS2" << endl; 
                        inS2->printm();
                        inS2->printn(); }
    void set_inS1(int i, int j) { inS1->setm(i);
                                  inS1->setn(j); }
    void set_inS2(int i, int j) { inS2->setm(i);
                                  inS2->setn(j); }
    void S1pointtoS2() { inS1 = inS2; }
    void printcount() { cout << "inS1.count: " << inS1.use_count() << endl;
                        cout << "inS2.count: " << inS2.use_count() << endl; }
private:
    shared_ptr inS1;
    shared_ptr inS2;
};

int main()
{
    shared_ptr<int> ap(new int(10));
    shared_ptr<int> ap1 = ap;
    bool a = (ap1 == ap);
    cout << "ap1==ap" << a << endl;
    cout << "*ap = " << *ap << endl;
    cout << "*ap1 = " << *ap1 << endl;
    *ap1 = 22;
    cout << "*ap = " << *ap <22);
    cout << ap.use_count() << endl;
    // test class S
    int  m = 1;
    int  n = 2;
    S s;
    s.print_inS1();
    s.print_inS2();
    s.set_inS1(m,n);
    s.print_inS1();
    s.print_inS2();
    s.printcount();
    s.S1pointtoS2();
    s.print_inS1();
    s.print_inS2();
    s.printcount();
    // shared_ptr in vector
    typedef vector< shared_ptr<int> > vs;
    vs v(10);
    int i = 0;
    for(vs::iterator pos = v.begin(); pos != v.end(); ++pos)
    {
        shared_ptr<int> vp(new int(++i));
        *pos = vp;
    }   
    for(int i = 0; i < 10; ++i)
    {
        cout << *(v[i]) << endl;
        cout << v[i].use_count() << endl;
    }
    shared_ptr<int> vp1 = v[1];
    *vp1 = 11;
    cout << *v[1] << endl;
    cout << v[1].use_count() << endl;
    return 0;
}

在之前的Blob学习中简单的了解了SyncedMemory类中都有些什么东西,为了进一步了解caffe是如何完成cpu和gpu数据管理,还是读一读源码吧。

syncedmem.hpp

#ifndef CAFFE_SYNCEDMEM_HPP_
#define CAFFE_SYNCEDMEM_HPP_

#include 

#include "caffe/common.hpp"

namespace caffe {

// If CUDA is available and in GPU mode, host memory will be allocated pinned,
// using cudaMallocHost. It avoids dynamic pinning for transfers (DMA).
// The improvement in performance seems negligible in the single GPU case,
// but might be more significant for parallel training. Most importantly,
// it improved stability for large models on many GPUs.
// 如果使用cuda,那么用cudaMallocHost分配管理主机内存,这种方式在多gpu上并行计算时,性能会显著提高。
// 如果只用cpu,则用malloc分配内存。要想了解两者的差异,还需进一步学习。
// 分配内存函数
inline void CaffeMallocHost(void** ptr, size_t size, bool* use_cuda) {
#ifndef CPU_ONLY
  if (Caffe::mode() == Caffe::GPU) {
    CUDA_CHECK(cudaMallocHost(ptr, size));
    *use_cuda = true;
    return;
  }
#endif
  *ptr = malloc(size);
  *use_cuda = false;
  CHECK(*ptr) << "host allocation of size " << size << " failed";
}

// 释放内存函数
inline void CaffeFreeHost(void* ptr, bool use_cuda) {
#ifndef CPU_ONLY
  if (use_cuda) {
    CUDA_CHECK(cudaFreeHost(ptr));
    return;
  }
#endif
  free(ptr);
}


/**
 * @brief Manages memory allocation and synchronization between the host (CPU)
 *        and device (GPU).
 *
 * TODO(dox): more thorough description.
 */
 // 管理内存分配和同步的类
class SyncedMemory {
 public:
  // 构造函数
  SyncedMemory()
      : cpu_ptr_(NULL), gpu_ptr_(NULL), size_(0), head_(UNINITIALIZED),
        own_cpu_data_(false), cpu_malloc_use_cuda_(false), own_gpu_data_(false),
        gpu_device_(-1) {}
  explicit SyncedMemory(size_t size)
      : cpu_ptr_(NULL), gpu_ptr_(NULL), size_(size), head_(UNINITIALIZED),
        own_cpu_data_(false), cpu_malloc_use_cuda_(false), own_gpu_data_(false),
        gpu_device_(-1) {}
  ~SyncedMemory();
  // 返回指向cpu数据的void类型的指针,用void类型可以管理任意类型的数据,对于具体类型数据只需制定指针类型即可
  // 另外指针时const的,不能通过该指针改变数据
  const void* cpu_data();
  // 将当前cpu_ptr_指向data指向的数据,并将其原来指向的数据(如果存在)释放
  void set_cpu_data(void* data);
  // 下面两个与cpu类似
  const void* gpu_data();
  void set_gpu_data(void* data);
  // 下面两个也与cpu_data类似,区别是可以通过该指针改变其数据
  void* mutable_cpu_data();
  void* mutable_gpu_data();
  // head的状态,前三个分别是,没有初始化,在cpu,在gpu,最后一个表示同步了,说名数据刚从cpu转到gpu,或gpu到cpu
  // 下面的函数要很据这些状态来判断是否同步,怎样同步
  enum SyncedHead { UNINITIALIZED, HEAD_AT_CPU, HEAD_AT_GPU, SYNCED };
  SyncedHead head() { return head_; }
  // 返回size
  size_t size() { return size_; }

#ifndef CPU_ONLY
  // 将cpu的数据同步到gpu上,并head_ = SYNCED
  void async_gpu_push(const cudaStream_t& stream);
#endif

 private:
  // 将数据同步到cpu,根据head的状态进行不同的操作,具体的可以看.cpp文件
  void to_cpu();
  // 与cpu类似
  void to_gpu();
  // 下面就是其私有成员变量了,见名知意
  void* cpu_ptr_;
  void* gpu_ptr_;
  size_t size_;
  SyncedHead head_;
  bool own_cpu_data_;
  bool cpu_malloc_use_cuda_;
  bool own_gpu_data_;
  int gpu_device_;
  // 这个其实就是禁止使用复制和赋值操作符(=)
  DISABLE_COPY_AND_ASSIGN(SyncedMemory);
};  // class SyncedMemory

}  // namespace caffe

#endif  // CAFFE_SYNCEDMEM_HPP_

通过读头文件再参考下面的cpp文件已经对SyncedMemory的功能很清楚了,并且能够大体了解时如何实现的,如果再深究的话,可能就要研究cuda,这里就简单理解它给出函数的意义就可以了,比如cudaMemcpyAsync。下面的cpp文件内容少易读,上面的注释就是参考它写的,所以就不在赘述了,为了方便还是贴出来吧。

#include "caffe/common.hpp"
#include "caffe/syncedmem.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {

SyncedMemory::~SyncedMemory() {
  if (cpu_ptr_ && own_cpu_data_) {
    CaffeFreeHost(cpu_ptr_, cpu_malloc_use_cuda_);
  }

#ifndef CPU_ONLY
  if (gpu_ptr_ && own_gpu_data_) {
    int initial_device;
    cudaGetDevice(&initial_device);
    if (gpu_device_ != -1) {
      CUDA_CHECK(cudaSetDevice(gpu_device_));
    }
    CUDA_CHECK(cudaFree(gpu_ptr_));
    cudaSetDevice(initial_device);
  }
#endif  // CPU_ONLY
}

inline void SyncedMemory::to_cpu() {
  switch (head_) {
  case UNINITIALIZED:
    CaffeMallocHost(&cpu_ptr_, size_, &cpu_malloc_use_cuda_);
    caffe_memset(size_, 0, cpu_ptr_);
    head_ = HEAD_AT_CPU;
    own_cpu_data_ = true;
    break;
  case HEAD_AT_GPU:
#ifndef CPU_ONLY
    if (cpu_ptr_ == NULL) {
      CaffeMallocHost(&cpu_ptr_, size_, &cpu_malloc_use_cuda_);
      own_cpu_data_ = true;
    }
    caffe_gpu_memcpy(size_, gpu_ptr_, cpu_ptr_);
    head_ = SYNCED;
#else
    NO_GPU;
#endif
    break;
  case HEAD_AT_CPU:
  case SYNCED:
    break;
  }
}

inline void SyncedMemory::to_gpu() {
#ifndef CPU_ONLY
  switch (head_) {
  case UNINITIALIZED:
    CUDA_CHECK(cudaGetDevice(&gpu_device_));
    CUDA_CHECK(cudaMalloc(&gpu_ptr_, size_));
    caffe_gpu_memset(size_, 0, gpu_ptr_);
    head_ = HEAD_AT_GPU;
    own_gpu_data_ = true;
    break;
  case HEAD_AT_CPU:
    if (gpu_ptr_ == NULL) {
      CUDA_CHECK(cudaGetDevice(&gpu_device_));
      CUDA_CHECK(cudaMalloc(&gpu_ptr_, size_));
      own_gpu_data_ = true;
    }
    caffe_gpu_memcpy(size_, cpu_ptr_, gpu_ptr_);
    head_ = SYNCED;
    break;
  case HEAD_AT_GPU:
  case SYNCED:
    break;
  }
#else
  NO_GPU;
#endif
}

const void* SyncedMemory::cpu_data() {
  to_cpu();
  return (const void*)cpu_ptr_;
}

void SyncedMemory::set_cpu_data(void* data) {
  CHECK(data);
  if (own_cpu_data_) {
    CaffeFreeHost(cpu_ptr_, cpu_malloc_use_cuda_);
  }
  cpu_ptr_ = data;
  head_ = HEAD_AT_CPU;
  own_cpu_data_ = false;
}

const void* SyncedMemory::gpu_data() {
#ifndef CPU_ONLY
  to_gpu();
  return (const void*)gpu_ptr_;
#else
  NO_GPU;
  return NULL;
#endif
}

void SyncedMemory::set_gpu_data(void* data) {
#ifndef CPU_ONLY
  CHECK(data);
  if (own_gpu_data_) {
    int initial_device;
    cudaGetDevice(&initial_device);
    if (gpu_device_ != -1) {
      CUDA_CHECK(cudaSetDevice(gpu_device_));
    }
    CUDA_CHECK(cudaFree(gpu_ptr_));
    cudaSetDevice(initial_device);
  }
  gpu_ptr_ = data;
  head_ = HEAD_AT_GPU;
  own_gpu_data_ = false;
#else
  NO_GPU;
#endif
}

void* SyncedMemory::mutable_cpu_data() {
  to_cpu();
  head_ = HEAD_AT_CPU;
  return cpu_ptr_;
}

void* SyncedMemory::mutable_gpu_data() {
#ifndef CPU_ONLY
  to_gpu();
  head_ = HEAD_AT_GPU;
  return gpu_ptr_;
#else
  NO_GPU;
  return NULL;
#endif
}

#ifndef CPU_ONLY
void SyncedMemory::async_gpu_push(const cudaStream_t& stream) {
  CHECK(head_ == HEAD_AT_CPU);
  if (gpu_ptr_ == NULL) {
    CUDA_CHECK(cudaGetDevice(&gpu_device_));
    CUDA_CHECK(cudaMalloc(&gpu_ptr_, size_));
    own_gpu_data_ = true;
  }
  const cudaMemcpyKind put = cudaMemcpyHostToDevice;
  CUDA_CHECK(cudaMemcpyAsync(gpu_ptr_, cpu_ptr_, size_, put, stream));
  // Assume caller will synchronize on the stream before use
  head_ = SYNCED;
}
#endif

}  // namespace caffe

总结
通过读SyncedMemory的源代码,可以看到,用它可以为数据分配内存空间,根据需要储存,获取,修改cpu或gpu数据,比如,set_cpu_data,set_gpu_data,cpu_data,gpu_data,mutable_cpu_data,mutable_gpu_data。并可以在cpu和gpu之间进行同步,不用关心其具体细节。

希望大家批评指正。

参考:
【1】http://www.cnblogs.com/louyihang-loves-baiyan/p/5150554.html

你可能感兴趣的:(caffe源码学习)