题目描述
Erwin最近对一种叫"thair"的东西巨感兴趣。。。
在含有n个整数的序列a1,a2......an中,
三个数被称作"thair"当且仅当i
求一个序列中"thair"的个数。
输入输出格式
输入格式:
开始一个正整数n,
以后n个数a1~an。
输出格式:
"thair"的个数
输入输出样例
输入样例#1:
4 50 18
3
4
6
8
14
15
16
17
21
25
26
Input
4
2 1 3 4
Output
2
Input
5
1 2 2 3 4
Output
7
对样例2的说明:
7个"thair"分别是
1 2 3
1 2 4
1 2 3
1 2 4
1 3 4
2 3 4
2 3 4
说明
约定 30%的数据n<=100
60%的数据n<=2000
100%的数据n<=30000
大数据随机生成
0<=a[i]<=maxlongint
那么如果我们考虑在输入时考虑当前的c,那么我们只需找两个小于c并且不同的数
如果位置小于c且值小于c的数没有重复,那么我们可以得到是,以c结尾的三元组数量是
n*(n-1)/2,
有重复元素怎么办呢,因为这样计数,1,2,2,3,4,计算以4结尾的三元组时,会算到2,2,4
那么怎么解决这个问题..
解决1:
换种计数方法,考虑中间元素b,我们只需考虑b之前有多少个严格小于它的元素数量u,之后有多少严格大于它的元素v
于是中间元素b的三元组对答案的贡献就是u*v
于是我们可以算两遍,第一遍算u第二遍算v
附上代码...
1 #include
2 #include
3 #include
4 #include
5 using namespace std;
6 const int maxn=1e5+7;
7 int N,w;
8 typedef long long ll;
9 ll t[maxn],u[maxn],v[maxn];
10 struct node{
11 int id,v;node(){};node(int id,int v):id(id),v(v){};
12 };
13 node a[maxn];
14 int lowbit(int x){
15 return x&-x;
16 }
17 void add(int n,int x){
18 while(n<=N){
19 t[n]+=x;
20 n+=lowbit(n);
21 }
22 }
23 int sum(int n){
24 int ans=0;
25 while(n){
26 ans+=t[n];
27 n-=lowbit(n);
28 }
29 return ans;
30 }
31 bool cmp1(node a,node b){
32 return a.v<b.v;
33 }
34 bool cmp2(node a,node b){
35 return a.id<b.id;
36 }
37 int main(){
38 int n,x;scanf("%d",&n);
39 for(int i=1;i<=n;++i){
40 scanf("%d",&x);
41 a[i]=node(i,x);
42 }
43 sort(a+1,a+1+n,cmp1);
44 int cnt=1,st=1,pre=a[1].v;
45 for(int i=2;i<=n;++i){
46 while(i<=n&&a[i].v==pre) i++;
47 for(int j=st;jj){
48 a[j].v=cnt;
49 }
50 st=i;pre=a[i].v;
51 cnt++;
52 }
53 for(int j=st;j<=n;++j) a[j].v=cnt;
54 //for(int i=1;i<=n;++i) printf("%d,",a[i].v);printf("\n");
55 N=cnt;
56 sort(a+1,a+1+n,cmp2);
57 ll ans=0;
58 for(int i=1;i<=n;++i){
59 u[i]=sum(a[i].v-1);
60 add(a[i].v,1);
61 }
62 memset(t,0,sizeof(t));
63 for(int i=n;i>=1;--i){
64 v[i]=sum(N)-sum(a[i].v);
65 ans+=u[i]*v[i];
66 add(a[i].v,1);
67 }
68 printf("%lld\n",ans);
69 return 0;
70 }
View Code
其实也可以这么写,
因为sum(N)=n-i的,因为是倒着插入的,所以当你插入n时,正好已经插入了n-n个元素,
插入n-1时,正好已经插入了一个元素,所以n-i-sum(a[i].v)的意思是,当前插入的所有元素减去小于等于v的元素个数,
那么剩下的一定都大于v,sum(N)=大于v的元素个数+小于等于v的元素个数
1 #include
2 #include
3 #include
4 #include
5 using namespace std;
6 const int maxn=1e5+7;
7 int N,w;
8 typedef long long ll;
9 ll t[maxn],u[maxn],v[maxn];
10 struct node{
11 int id,v;node(){};node(int id,int v):id(id),v(v){};
12 };
13 node a[maxn];
14 int lowbit(int x){
15 return x&-x;
16 }
17 void add(int n,int x){
18 while(n<=N){
19 t[n]+=x;
20 n+=lowbit(n);
21 }
22 }
23 int sum(int n){
24 int ans=0;
25 while(n){
26 ans+=t[n];
27 n-=lowbit(n);
28 }
29 return ans;
30 }
31 bool cmp1(node a,node b){
32 return a.v<b.v;
33 }
34 bool cmp2(node a,node b){
35 return a.id<b.id;
36 }
37 int main(){
38 int n,x;scanf("%d",&n);
39 for(int i=1;i<=n;++i){
40 scanf("%d",&x);
41 a[i]=node(i,x);
42 }
43 sort(a+1,a+1+n,cmp1);
44 int cnt=1,st=1,pre=a[1].v;
45 for(int i=2;i<=n;++i){
46 while(i<=n&&a[i].v==pre) i++;
47 for(int j=st;jj){
48 a[j].v=cnt;
49 }
50 st=i;pre=a[i].v;
51 cnt++;
52 }
53 for(int j=st;j<=n;++j) a[j].v=cnt;
54 //for(int i=1;i<=n;++i) printf("%d,",a[i].v);printf("\n");
55 N=cnt;
56 sort(a+1,a+1+n,cmp2);
57 ll ans=0;
58 for(int i=1;i<=n;++i){
59 u[i]=sum(a[i].v-1);
60 add(a[i].v,1);
61 }
62 memset(t,0,sizeof(t));
63 for(int i=n;i>=1;--i){
64 v[i]=n-i-sum(a[i].v);
65 ans+=u[i]*v[i];
66 add(a[i].v,1);
67 }
68 printf("%lld\n",ans);
69 return 0;
70 }
View Code