matlab里颜色直方图的画法

1.三个颜色的直方图画在一起。

I=imread('sample.bmp');  % 文件名自己改
siz=size(I);
I1=reshape(I,siz(1)*siz(2),siz(3));  % 每个颜色通道变为一列
I1=double(I1);
[N,X]=hist(I1, [0:1:255]);    % 如果需要小矩形宽一点,划分区域少点,可以把步长改大,比如0:5:255
bar(X,N(:,[3 2 1]));    % 柱形图,用N(:,[3 2 1])是因为默认绘图的时候采用的颜色顺序为b,g,r,c,m,y,k,跟图片的rgb顺序正好相反,所以把图片列的顺序倒过来,让图片颜色通道跟绘制时的颜色一致
xlim([0 255])
hold on
plot(X,N(:,[3 2 1]));    % 上边界轮廓
hold off
2.分开画

i=imread('d:\1.jpg');%读取你要看的图像
R=i(:,:,1);%把RGB各个分量提出
G=i(:,:,2);
B=i(:,:,3);
figure;%画出直方图
subplot(1,3,1),imhist(R),title('红色');
subplot(1,3,2),imhist(G),title('绿色');
subplot(1,3,3),imhist(B),title('蓝色');

你也可以直接右击i选open selection查看里面的像素值。
3.hsv量化

在图像处理技术领域,通常分析彩色图像是对RGB模式下各分量进行分析。如果要进行颜色识别,利用RGB各分量的组合进行分析图像的颜色就比较困难了,所以需要将彩色图像从RGB模式下转换到HSV模式(维基百科)下,分析图像颜色,并设计出颜色分布的直方图,并重新转换到RGB模式下进行显示。本算法是在matlab环境下实现的。具体代码如下:

%%================================

clear
clc
close all
Image = imread('Test3.jpg');
[M,N,O] = size(Image);
[h,s,v] = rgb2hsv(Image);

H = h; S = s; V = v;
h = h*360;  
%将hsv空间非等间隔量化:
%  h量化成16级;
%  s量化成4级;
%  v量化成4级;
for i = 1:M
    for j = 1:N
        if h(i,j)<=15||h(i,j)>345
            H(i,j) = 0;
        end
        if h(i,j)<=25&&h(i,j)>15
            H(i,j) = 1;
        end
        if h(i,j)<=45&&h(i,j)>25
            H(i,j) = 2;
        end
        if h(i,j)<=55&&h(i,j)>45
            H(i,j) = 3;
        end
        if h(i,j)<=80&&h(i,j)>55
            H(i,j) = 4;
        end
        if h(i,j)<=108&&h(i,j)>80
            H(i,j) = 5;
        end
        if h(i,j)<=140&&h(i,j)>108
            H(i,j) = 6;
        end
        if h(i,j)<=165&&h(i,j)>140
            H(i,j) = 7;
        end
        if h(i,j)<=190&&h(i,j)>165
            H(i,j) = 8;
        end
        if h(i,j)<=220&&h(i,j)>190
            H(i,j) = 9;
        end
        if h(i,j)<=255&&h(i,j)>220
            H(i,j) = 10;
        end
        if h(i,j)<=275&&h(i,j)>255
            H(i,j) = 11;
        end
        if h(i,j)<=290&&h(i,j)>275
            H(i,j) = 12;
        end
        if h(i,j)<=316&&h(i,j)>290
            H(i,j) = 13;
        end
        if h(i,j)<=330&&h(i,j)>316
            H(i,j) = 14;
        end
        if h(i,j)<=345&&h(i,j)>330
            H(i,j) = 15;
        end
    end
end
for i = 1:M
    for j = 1:N
        if s(i,j)<=0.15&&s(i,j)>0
            S(i,j) = 1;
        end
        if s(i,j)<=0.4&&s(i,j)>0.15
            S(i,j) = 2;
        end
        if s(i,j)<=0.75&&s(i,j)>0.4
            S(i,j) = 3;
        end
        if s(i,j)<=1&&s(i,j)>0.75
            S(i,j) = 4;
        end
    end
end
for i = 1:M
    for j = 1:N
        if v(i,j)<=0.15&&v(i,j)>0
            V(i,j) = 1;
        end
        if v(i,j)<=0.4&&v(i,j)>0.15
            V(i,j) = 2;
        end
        if v(i,j)<=0.75&&v(i,j)>0.4
            V(i,j) = 3;
        end
        if v(i,j)<=1&&v(i,j)>0.75
            V(i,j) = 4;
        end
    end
end


% 构建4*16二维数组存放H-S数据
Hist = zeros(16,4);
for i = 1:M
    for j = 1:N
        for k = 1:16
            for l = 1:4
                if  l==S(i,j)&& k==H(i,j)+1
                    Hist(k,l) = Hist(k,l)+1;
                end
            end
        end
    end
end
for k = 1:16
    for l =1:4
        His((k-1)*4+l) = Hist(k,l);%转化为一维数组
    end
end
His = His/sum(His)*1000;
% 手工绘制彩色图像直方图
% hist_h
m=0;
for j = 1:300
    if rem(j,16)==1 && m<16
        for k = 0:15
            for i = 1:200
                hist_h(i,j+k) = m;
            end            
        end
        m = m+1;
    end
end
% hist_s
m=0;
for j = 1:300
    if rem(j,4) == 1 && m<64
        n = rem(m,4);
        for k = 0:3              
            for i =1:200              
                hist_s(i,j+k) = n+1;                
            end                     
        end
        m = m+1; 
    end    
end
% hist_v
for j = 1:256
    for i = 1:200
        hist_v(i,j) = 0.98;
    end
end
% 把His赋值给hist_v
for k = 1:64
    for j = 1:256
        if floor((j-1)/4) == k
            for i = 1:200
                if i<200-His(k+1)%i>His(k+1)%
                    hist_v(i,j) = 0;
                end
            end
        end
    end
end

%将h、s、v分量图合并转化为RGB模式

I_H = hsv2rgb(hist_h/16,hist_s/4,hist_v);

% 画图显示 
figure;
subplot(3,2,1),imshow(Image),title('原图');
subplot(3,2,2),imshow(H,[]),title('H分量图');
subplot(3,2,3),imshow(S,[]),title('S分量图');
subplot(3,2,4),imshow(V,[]),title('V分量图');
subplot(3,2,5),imshow(I_rgb,[]),title('色彩量化后的RGB图像');
subplot(3,2,6),imshow(I_H,[]),title('H-S直方图');
figure,imshow(I_H);

%%=======================================

对H、S和V的非均匀量化的划分方法有很多种。而且颜色分布直方图中所有分量V的所有值都设置为固定的一个参数。对于彩色图像的灰色部分没有做针对性处理。


你可能感兴趣的:(Matlab,CV)