- 邻近巷道爆破振动模拟与可视化:计算力学的工程应用
碳酸的唐
动态规划数学建模
引言隧道爆破施工是现代工程建设中常用的方法,但爆破产生的振动会对周围结构和地质环境产生影响。本文介绍一个基于Python的邻近巷道爆破振动模拟系统,该系统通过数值计算模拟爆破引起的应力波传播过程,并提供多种可视化方式展示振动效应。本研究对于理解爆破振动机理、评估爆破安全距离以及优化爆破参数具有重要意义。理论基础爆破应力波传播模型爆破引起的应力波在岩体中的传播可通过弹性波动理论描述。在均匀介质中,应
- 租户订阅、套餐切换与服务启停全流程设计:SaaS 计费引擎与运营控制体系实战解析
观熵
企业级SaaS架构与工程实战全流程SaaS架构
租户订阅、套餐切换与服务启停全流程设计:SaaS计费引擎与运营控制体系实战解析关键词多租户订阅系统、SaaS套餐管理、服务启停机制、计费周期控制、套餐额度配置、权限策略切换、租户状态机、运营控制后台、资源配额调节、合约期与续订策略摘要在企业级SaaS系统中,租户订阅与套餐管理机制不仅决定平台的盈利模型,更直接关系到权限控制、资源分配、服务启停等系统级行为。传统CRM或权限表驱动的权限体系难以支撑“
- SaaS 的订阅计费模型设计实战指南:按量、按用户、按功能的架构与实现全解析
SaaS的订阅计费模型设计实战指南:按量、按用户、按功能的架构与实现全解析关键词SaaS计费模型、按量计费、用户数计费、功能模块计费、订阅管理、计费系统架构、账单系统、分级定价、后付费、使用量追踪摘要在企业级SaaS系统架构中,计费模型不仅关系到产品商业化路径的可行性,还直接决定了系统架构、数据采集与账务合规的设计逻辑。本文将深入解析三种主流SaaS订阅计费模式:按量计费(Usage-based)
- Midjourney:AI人工智能图像生成的新方向
AI智能探索者
人工智能midjourney计算机视觉ai
Midjourney:AI人工智能图像生成的新方向关键词:Midjourney、AI图像生成、扩散模型、提示词工程、多模态学习、生成式AI、创意工具摘要:本文将带您走进AI图像生成的前沿领域,以Midjourney为核心,从技术原理到实际应用,用通俗易懂的语言解析其背后的“魔法”。我们将通过生活案例、技术拆解和实战演示,揭示Midjourney如何通过扩散模型、提示词工程和多模态学习,重新定义“用
- 【pytorch】——Could not export Python function call ‘Scatter‘
pytorch用pytorch的trace导出模型的时候,报错errorRuntimeError:CouldnotexportPythonfunctioncall'Scatter'.RemovecallstoPythonfunctionsbeforeexport.Didyouforgettoadd@scriptor@script_methodannotation?Ifthisisann.Modul
- 基于评估方法论评估一个大模型的准确度
尤物程序猿
自动化运维
评估标准先来说说什么是大模型的一个准确度,指其输出结果与真实值或期望值之间的符合程度,但在不同任务和场景下具体定义和评估方式存在显著差异。要评估一个大模型还得考虑到评估哪些方面呢?以下是大概的几个方向任务类型准确度定义分类任务预测类别与真实标签的一致性生成任务生成内容的真实性/流畅性/相关性问答任务答案的事实正确性和完整性多模态任务跨模态对齐能力(如图文匹配)除了以上几个方面还需要考虑表面匹配:字
- 物联网零售领域AI算力网络与通信的应用探索
AI算力网络与通信
物联网零售人工智能ai
物联网零售领域AI算力网络与通信的应用探索关键词:物联网、零售领域、AI算力网络、通信、应用探索摘要:本文聚焦于物联网零售领域,深入探讨了AI算力网络与通信的应用。首先介绍了相关背景,包括目的、预期读者等。接着对核心概念进行解释,阐述它们之间的关系并给出原理架构示意图和流程图。然后详细讲解核心算法原理、数学模型与公式,通过项目实战展示代码案例及解读。还介绍了实际应用场景、推荐相关工具资源,分析未来
- Kotlin 与移动开发的无缝对接秘籍
移动开发前沿
kotlin开发语言androidai
Kotlin与移动开发的无缝对接秘籍关键词:Kotlin、移动开发、Android、iOS、跨平台开发、协程、JetpackCompose摘要:本文深入解析Kotlin在移动开发领域的核心优势与实践方法,通过剖析Kotlin语言特性、跨平台架构、与原生生态的深度集成(如AndroidJetpack和iOSSwift互操作)、异步编程模型(协程)等关键技术,结合完整的项目实战案例,展示如何利用Kot
- 剖析AI人工智能领域Whisper的性能指标
AI大模型应用实战
人工智能whisperxcodeai
剖析AI人工智能领域Whisper的性能指标关键词:Whisper、语音识别、性能指标、ASR、AI模型评估、基准测试、语音转文本摘要:本文深入剖析OpenAI开发的Whisper语音识别系统的性能指标。我们将从技术原理、架构设计、性能基准测试等多个维度,全面分析Whisper在不同场景下的表现。文章将详细讲解Whisper的评估方法、关键性能指标解读、实际应用中的性能表现,以及与其他主流语音识别
- 【科研写作自动化工具】如何用AI技术组合(大模型+多Agent+自动化)打造一个“智能论文生产线”,把枯燥的写作流程变成自动化
n8n是一款开源的工作流自动化工具,类似于Zapier或Make(原Integromat),但更注重灵活性和开发者友好性。在课程文件中提到的n8n自动化流水线主要用于科研写作的自动化流程集成,以下是详细解释:n8n的核心功能可视化工作流设计:通过拖拽节点(Nodes)连接不同工具和服务,无需编写复杂代码即可搭建自动化流程。多平台集成:支持连接文献数据库(如PubMed、arXiv)、AI模型(如O
- 金融安全生命线:用AWS EventBridge和CloudTrail构建主动式入侵检测系统
运维开发王义杰
系统运维aws信息安全安全金融aws
今天,我们来聊一个硬核又极具价值的话题:如何为身处安全风暴中心的金融系统,构建一道坚不可摧的主动式入侵检测防线。在金融领域,安全不是一个选项,而是生存的基石。任何微小的疏忽都可能导致灾难性的资产损失。传统的防火墙和WAF固然重要,但面对日益复杂的内部威胁和APT攻击,我们需要更智能、更主动的监控手段。幸运的是,AWS为我们提供了两个强大的武器:CloudTrail和EventBridge。利用AW
- 【V18.0 - 飞升篇】我把“大模型”装进电脑后,我的AI学会了改稿!——本地部署LLM终极保姆级教程
爱分享的飘哥
人工智能语言模型pythonLLMai
在过去的十几篇文章中,我们已经将我们的AI打造成了一个顶级的“分析师”。它能看、能听、能读,能预测多维度的价值指标,甚至能用SHAP解释自己的决策。它很强大,但它的能力,始终停留在“分析”和“诊断”的层面。它能告诉我“你的开头不行”,但无法告诉我“一个好的开头应该怎么写”。这就像我的副驾驶是一位顶级的F1数据分析师,他能告诉我每个弯道的最佳速度和刹车点,但他自己并不会开车。我需要一次终极的升级,我
- 零信任的两大关键技术:内容识别和行为分析
天空卫士
网络数据安全网络安全
零信任(ZeroTrust)安全对传统边界安全架构进行了重新评估和审视,并对安全架构思路给出了新的建议。零信任模型的核心零信任的意思是:从不信任,始终验证。其核心思想是,默认情况下不应该信任网络内部和外部的任何人/设备/系统,需要基于认证和授权重新构建访问控制的信任基础。如IP地址、主机、地理位置、所处网络等均不能作为可信的凭证。通过零信任,可以防止恶意用户访问企业内部的私有资源、防止数据泄露以及
- 用队列实现生产者-消费者模型 —— 详解与代码讲解
百年孤独_
C语言项目计算机网络C操作系统
用队列实现生产者-消费者模型——详解与代码讲解一、引言生产者-消费者问题(Producer-ConsumerProblem)是操作系统、并发编程和数据结构课程中的经典案例。它描述了两个角色:生产者负责生产数据并放入缓冲区,消费者则从缓冲区取出数据进行消费。两者通过一个共享的缓冲区(通常为队列)进行协作,既要保证数据的正确流转,又要避免资源竞争和数据丢失。本篇文章将以循环队列为核心,详细讲解如何用C
- AI大模型如何重塑软件开发流程?
真实的菜
活动人工智能
AI大模型如何重塑软件开发流程?文章摘要随着ChatGPT、Claude等AI大模型的快速发展,软件开发行业正经历着前所未有的变革。本文深入探讨了AI技术如何重塑传统的软件开发流程,分析了开发者角色的转变,并提供了拥抱AI时代的实践指南。核心观点AI大模型将开发者角色从"编码者"转变为"设计师"需求分析、代码生成、测试等环节将实现智能化新技能需求:AI工具使用、提示工程、跨领域整合未来趋势:低代码
- 结合创新idea:机器学习+运筹优化=CCF高端局
Ai多利
机器学习人工智能
2024深度学习发论文&模型涨点之——机器学习+运筹优化机器学习是人工智能的一个分支,它使计算机系统能够从数据中学习并改进其性能,而无需进行明确的编程。运筹优化,也称为运筹学或运营管理,是应用数学的一个分支,它使用数学模型和算法来支持复杂决策过程的制定。机器学习与运筹优化的结合是一个前沿且活跃的研究领域,它们相互补充,为解决复杂问题提供了新的思路和方法。小编整理了一些机器学习+运筹优化【论文+代码
- JVM类加载系统详解:深入理解Java类的生命周期
真实的菜
jvmjvmjava开发语言
JVM类加载系统详解:深入理解Java类的生命周期目录类加载机制类加载的生命周期类加载器分类双亲委派模型原理与作用️自定义类加载器自定义类加载器的实现步骤打破双亲委派模型的场景与案例性能优化与最佳实践总结类加载机制类加载机制是JVM的核心功能之一,它负责将Java类文件加载到内存中并转换为可执行的字节码。理解类加载机制对于Java开发者来说至关重要。类加载的生命周期类加载的完整生命周期包含七
- 基于KANO模型的调研问卷设计避坑
Alex艾力的IT数字空间
产品经理原型模式产品运营交互设计规范腾讯会议蓝湖
KANO模型调研中,设计无引导性偏差的问卷需遵循中立表述、选项平衡、逻辑验证原则。一、避免引导性偏差的核心策略1.问题中性化设计禁用倾向性词汇:避免“优化”“提升”等暗示性词语,改用中性描述。❌引导性:“增加扫码支付功能会让体验更好吗?”✅中性化:“扫码支付功能的存在对您来说如何?”对称性表述:正向/反向问题结构完全对仗,仅改变核心条件。正向:“提供XX功能时,您的满意度如何?”反向:“不提供XX
- 代码大模型崛起:垂直领域的技术革命与千亿市场争夺战
Liudef06小白
人工智能语言模型垂直模型
代码大模型崛起:垂直领域的技术革命与千亿市场争夺战全球软件工程师缺口达数千万,人力成本突破6000亿美元的压力下,一场由AI驱动的编程效率革命正以颠覆性姿态重塑开发领域。2025年,全球软件开发领域迎来关键转折点。据Gartner预测,全球软件开发支出将突破1.2万亿美元,其中人力成本占比高达50%,达6000亿美元。与此同时,全球软件工程师缺口持续扩大,预计未来十年将达到数千万量级。在这一背景下
- 【GitHub开源项目实战】Agent-Zero 多模态 Agent 框架的架构实现与实战落地
观熵
GitHub开源项目实战github开源架构
开源项目实战解析:Agent-Zero多模态Agent框架的架构实现与实战落地关键词:Agent-Zero、LLMAgent、多模态融合、LangGraph、结构化对话、函数调用、RAG、真实场景实战、开源项目分析摘要:Agent-Zero是一个以LangGraph为核心构建的多模态智能体框架,专注于大语言模型(LLMs)驱动下的多模态Agent系统实现,具备高度模块化、支持结构化对话状态流转、工
- 【LangChain编程:从入门到实践】LangChain与其他框架的比较
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【LangChain编程:从入门到实践】LangChain与其他框架的比较1.背景介绍1.1人工智能发展现状在当今时代,人工智能(AI)已经成为科技领域中最热门和最具革命性的话题之一。随着计算能力的不断提升和算法的持续优化,AI系统正在不断扩展其应用范围,包括自然语言处理、计算机视觉、决策系统等各个领域。1.2LangChain概述在这种背景下,LangChain作为一个新兴的AI框架应运而生。L
- 详解 OCCT Class SelectMgr_SelectableObject
我们来深入解析SelectMgr_SelectableObject这个类。SelectMgr_SelectableObject是AIS_InteractiveObject的直接父类,它专门负责定义一个对象“可被选择”的特性和行为。可以把它看作是OCCT选择机制中的核心数据模型。它本身不执行选择操作,而是为选择管理器(SelectMgr_SelectionManager)提供所有必要的信息,告诉管理
- 踏入真实:具身智能与物理世界的认知交响
当大型语言模型在文本的海洋中纵横捭阖,生成式AI在数字画布上挥洒创意时,人工智能仍有一个根本性的疆域尚未完全征服——真实的三维物理世界。理解一个苹果,不能仅靠词向量坐标;学会行走,无法通过阅读说明书达成;在拥挤的街道导航,远非处理符号逻辑那般简单。智能的进化,自生命诞生之初,便与具身性(Embodiment)和环境交互(Interaction)密不可分。我们的认知、学习、乃至意识的雏形,都源于身体
- Python scikit-learn 【机器学习库】全面讲解
让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——不写代码也能做软件开发》scikit-learn(简称sklearn)是Python最流行的机器学习库之一,提供简单高效的数据挖掘和数据分析工具。它基于NumPy、SciPy和Matplotlib构建,广泛应用于工业界和学术界。核心优势统一API设计:所有模型使用一致的接口(fit()、predict()、score())丰富的算法:覆
- 超详细yolov8/11-segment实例分割全流程概述:配置环境、数据标注、训练、验证/预测、onnx部署(c++/python)详解
因为yolo的检测/分割/姿态/旋转/分类模型的环境配置、训练、推理预测等命令非常类似,这里不再详细叙述,主要参考**【YOLOv8/11-detect目标检测全流程教程】**,下面有相关链接,这里主要针对数据标注、格式转换、模型部署等不同细节部分;【YOLOv8/11-detect目标检测全流程教程】超详细yolo8/11-detect目标检测全流程概述:配置环境、数据标注、训练、验证/预测、o
- 创新引入HAttention模块:提升YOLOv8小目标检测精度【YOLOv8】
程序员Gloria
YOLOv8YOLO目标跟踪人工智能目标检测
文章目录创新引入HAttention模块:提升YOLOv8小目标检测精度【YOLOv8】引言1.YOLOv8模型概述1.1YOLOv8架构1.2YOLOv8小目标检测的挑战2.HAttention模块:原理与设计2.1HAttention模块的动机2.2HAttention模块的结构3.HAttention模块在YOLOv8中的应用3.1引入HAttention模块3.2YOLOv8架构修改3.3
- 【无线通信】面向多天线用户的网络辅助全双工无蜂窝大规模MIMO研究
hans汉斯
论文荐读网络机器人大数据学习方法人工智能数据挖掘github
导读:基于网络辅助全双工技术无蜂窝大规模多输入多输出(multipleinputmultipleoutput,MIMO)系统是目前无线通信领域的关键技术之一。然而,现有的研究都假设采用完美硬件配置的单天线用户设备发送和接收信号,这种架构限制了系统整体性能的进一步提升。鉴于此,本文针对网络辅助全双工无蜂窝大规模MIMO环境中的多天线用户通信展开研究。利用现有的加性量化噪声模型,推导了低精度模数转换器
- SurveyForge:AI自动撰写综述论文的革命性工具,助力科研效率跃升
花生糖@
AIGC学习资料库人工智能AI论文AI助手
在学术研究领域,综述论文(SurveyPaper)的撰写是一项耗时且复杂的任务,通常需要数周甚至数月的文献调研与内容整合。如今,上海人工智能实验室、复旦大学与上海交通大学联合开源的SurveyForge,通过创新的AI技术,将这一过程压缩至10分钟内,且生成质量接近人工水平,成为科研人员的得力助手。项目简介SurveyForge是一款基于大语言模型(LLM)的自动综述论文生成工具,专为计算机科学领
- babylon-vrm-loader:让3D模型动起来的强大工具
纪栋岑Philomena
babylon-vrm-loader:让3D模型动起来的强大工具babylon-vrm-loaderglTFVRMextensionLoaderforbabylon.js项目地址:https://gitcode.com/gh_mirrors/ba/babylon-vrm-loader在现代网页开发中,3D渲染和交互已成为吸引用户注意力的重要手段。babylon-vrm-loader是一个开源项目,
- Qwen3 Reranker模型可以微调吗?
修昔底德
AI顿悟之旅人工智能LLMQwen3微调
可以,官方已经开放了完整的微调代码与训练范式,甚至推荐用LoRA/QLoRA做参数高效微调,把Qwen3-Reranker快速适配到你的专属知识库场景。下面总结一张总览表,然后分步骤讲怎样落地。说明是否支持微调✅支持(Apache-2.0许可,模型权重可商用)推荐方法LoRA/QLoRA(只训练几百万参数即可)可微调尺寸0.6B、4B、8B(0.6B单卡24GB就够;4B/8B建议多卡或Deeps
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo