数据处理之 — 归一化,标准化,正则化

数据规范化

  • 针对数据库

规范化把关系满足的规范要求分为几级,满足要求最低的是第一范式(1NF),再来是第二范式、第三范式、BC范式和4NF、5NF等等,范数的等级越高,满足的约束集条件越严格。

  • 针对数据

数据的规范化包括归一化、标准化、正则化,是一个统称(也有人把标准化作为统称)。

数据规范化是数据挖掘中的数据变换的一种方式,数据变换将数据变换或统一成适合于数据挖掘的形式,将被挖掘对象的属性数据按比例缩放,使其落入一个小的特定区间内,如[-1, 1]或[0, 1]

对属性值进行规范化常用于涉及神经网络和距离度量的分类算法和聚类算法当中。比如使用神经网络后向传播算法进行分类挖掘时,对训练元组中度量每个属性的输入值进行规范化有利于加快学习阶段的速度。对于基于距离度量相异度的方法,数据归一化能够让所有的属性具有相同的权值

数据规范化的常用方法有三种:最小最大值规范化,z-score标准化和按小数定标规范化

归一化 (Normalization):

属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现。

常用的最小最大规范化方法(x-min(x))/(max(x)-min(x))

数据处理之 — 归一化,标准化,正则化_第1张图片

除了上述介绍的方法之外,另一种常用的方法是将属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现。

使用这种方法的目的包括:

1、对于方差非常小的属性可以增强其稳定性。

2、维持稀疏矩阵中为0的条目

>>> X_train = np.array([[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]])
...
>>> min_max_scaler = preprocessing.MinMaxScaler()
>>> X_train_minmax = min_max_scaler.fit_transform(X_train)
>>> X_train_minmax
array([[ 0.5 , 0. , 1. ],
[ 1. , 0.5 , 0.33333333],
[ 0. , 1. , 0. ]])
 
>>> #将相同的缩放应用到测试集数据中
>>> X_test = np.array([[ -3., -1., 4.]])
>>> X_test_minmax = min_max_scaler.transform(X_test)
>>> X_test_minmax
array([[-1.5 , 0. , 1.66666667]])
 
 
>>> #缩放因子等属性
>>> min_max_scaler.scale_
array([ 0.5 , 0.5 , 0.33...])
 
>>> min_max_scaler.min_
array([ 0. , 0.5 , 0.33...])

当然,在构造类对象的时候也可以直接指定最大最小值的范围:feature_range=(min, max),此时应用的公式变为:

X_std=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0)) 

X_scaled=X_std/(max-min)+min


标准化(Standardization):

将数据按比例缩放,使之落入一个小的特定区间内,标准化后的数据可正可负,一般绝对值不会太大。

数据处理之 — 归一化,标准化,正则化_第2张图片

使用sklearn.preprocessing.scale()函数,可以直接将给定数据进行标准化:

>>> from sklearn import preprocessing
>>> import numpy as np
>>> X = np.array([[ 1., -1.,  2.],
...               [ 2.,  0.,  0.],
...               [ 0.,  1., -1.]])
>>> X_scaled = preprocessing.scale(X)
 
>>> X_scaled                                          
array([[ 0.  ..., -1.22...,  1.33...],
       [ 1.22...,  0.  ..., -0.26...],
       [-1.22...,  1.22..., -1.06...]])
 
>>>#处理后数据的均值和方差
>>> X_scaled.mean(axis=0)
array([ 0.,  0.,  0.])
 
>>> X_scaled.std(axis=0)
array([ 1.,  1.,  1.])

 

 

使用sklearn.preprocessing.StandardScaler类,使用该类的好处在于可以保存训练集中的参数(均值、方差)直接使用其对象转换测试集数据:

>>> scaler = preprocessing.StandardScaler().fit(X)
>>> scaler
StandardScaler(copy=True, with_mean=True, with_std=True)
 
>>> scaler.mean_
array([ 1. ..., 0. ..., 0.33...])
 
>>> scaler.std_
array([ 0.81..., 0.81..., 1.24...])
 
>>> scaler.transform(X)
array([[ 0. ..., -1.22..., 1.33...],
[ 1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]])
 
 
>>>#可以直接使用训练集对测试集数据进行转换
>>> scaler.transform([[-1., 1., 0.]])
array([[-2.44..., 1.22..., -0.26...]])
 

正则化:

在求解最优化问题中,调节拟合程度的参数一般称为正则项,越大表明欠拟合,越小表明过拟合

为了解决过拟合问题,通常有两种方法,第一是减小样本的特征(即维度),第二是正则化(又称为惩罚penalty)

正则化的一般形式是在整个平均损失函数的最后增加一个正则项(L2范数正则化,也有其他形式的正则化,作用不同)

正则项越大表明惩罚力度越大,等于0表示不做惩罚。

正则项越小,惩罚力度越小,极端为正则项为0,则会造成过拟合问题;正则化越大,惩罚力度越大,则容易出现欠拟合问题。

正则化的过程是将每个样本缩放到单位范数(每个样本的范数为1),如果后面要使用如二次型(点积)或者其它核方法计算两个样本之间的相似性这个方法会很有用。

Normalization主要思想是对每个样本计算其p-范数,然后对该样本中每个元素除以该范数,这样处理的结果是使得每个处理后样本的p-范数(l1-norm,l2-norm)等于1。

             p-范数的计算公式:||X||p=(|x1|^p+|x2|^p+...+|xn|^p)^1/p

该方法主要应用于文本分类和聚类中。例如,对于两个TF-IDF向量的l2-norm进行点积,就可以得到这两个向量的余弦相似性。

 

1、可以使用preprocessing.normalize()函数对指定数据进行转换:

 

>>> X = [[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2')
 
>>> X_normalized
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]])

 

2、可以使用processing.Normalizer()类实现对训练集和测试集的拟合和转换:

 

>>> normalizer = preprocessing.Normalizer().fit(X) # fit does nothing
>>> normalizer
Normalizer(copy=True, norm='l2')
 
>>>
>>> normalizer.transform(X)
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]])
 
>>> normalizer.transform([[-1., 1., 0.]])
array([[-0.70..., 0.70..., 0. ...]])

 

你可能感兴趣的:(Data,Mining,ML,&,CV,数据挖掘)