- 深入理解 MultiQueryRetriever:提升向量数据库检索效果的强大工具
nseejrukjhad
数据库python
深入理解MultiQueryRetriever:提升向量数据库检索效果的强大工具引言在人工智能和自然语言处理领域,高效准确的信息检索一直是一个关键挑战。传统的基于距离的向量数据库检索方法虽然广泛应用,但仍存在一些局限性。本文将介绍一种创新的解决方案:MultiQueryRetriever,它通过自动生成多个查询视角来增强检索效果,提高结果的相关性和多样性。MultiQueryRetriever的工
- FlagEmbedding
吉小雨
python库python
FlagEmbedding教程FlagEmbedding是一个用于生成文本嵌入(textembeddings)的库,适合处理自然语言处理(NLP)中的各种任务。嵌入(embeddings)是将文本表示为连续向量,能够捕捉语义上的相似性,常用于文本分类、聚类、信息检索等场景。官方文档链接:FlagEmbedding官方GitHub一、FlagEmbedding库概述1.1什么是FlagEmbeddi
- 基于深度学习的多模态信息检索
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的多模态信息检索(MultimodalInformationRetrieval,MMIR)是指利用深度学习技术,从包含多种模态(如文本、图像、视频、音频等)的数据集中检索出满足用户查询意图的相关信息。这种方法不仅可以处理单一模态的数据,还可以在多种模态之间建立关联,从而更准确地满足用户需求。1.多模态信息检索的挑战异构数据表示:多模态数据通常具有不同的特征和表示形式(如文本的词嵌入与图
- 2019-05-30导论
激情老王
洞察力,看透事物本质的能力,这个和格局有异曲同工之妙,但更能给人以清晰的描述和动感;看透了事物的发展规律,自然规律,才能找到自我追求的动力。系统动力学=要素✖连接关系。
- 机器学习实战笔记5——线性判别分析
绍少阿
机器学习笔记可视化机器学习python人工智能
任务安排1、机器学习导论8、核方法2、KNN及其实现9、稀疏表示3、K-means聚类10、高斯混合模型4、主成分分析11、嵌入学习5、线性判别分析12、强化学习6、贝叶斯方法13、PageRank7、逻辑回归14、深度学习线性判别分析(LDA)Ⅰ核心思想对于同样一件事,站在不同的角度,我们往往会有不同的看法,而降维思想,亦是如此。同上节课一样,我们还是学习降维的算法,只是提供了一种新的角度,由上
- 计算机网络笔记分享(第六章 应用层)
寒页_
计算机网络计算机网络笔记
文章目录六、应用层6.1域名系统DNS解析的两种查询方式6.2文件传送协议FTP简单传输协议TFTP6.3远程终端协议TELNET6.4万维网WWW统一资源定位符URL超文本传输协议HTTP万维网的文档HTML万维网的信息检索系统博客和微博社交网站6.5电子邮件6.6动态主机配置协议DHCP6.7简单网络管理协议SNMP6.8应用进程跨越网络的通信几种常用的系统调用6.9P2P应用介绍学习计算机网
- 「RIA学习力」《学习心理学》No.1,未闻
Nathan_2
「RIA学习力授权导师」便签输出第6期第1天《学习心理学》拆页一来自《第一章学习理论与教学导论》P9(一)学习的定义虽然本书讨论的学习理论之间存在差异,但这些理论在学习上确实有一些基本的确定性的假设。首先,它们都指出学习是人类行为表现performance,又译表现)或行为表现潜能的持久改变。这意味着学习者能够执行一些在学习发生之前不能执行的行动而且不管它们实际上是否有展示新习得行为表现的机会,这
- Python和数据分析:Seaborn新手指南
Python_魔力猿
python数据分析信息可视化
Seaborn是建立在Matplotlib之上的统计数据可视化库,它提供了高级接口和漂亮的默认样式,使得数据可视化变得更加简单和美观。1.导论Seaborn在数据可视化中的角色和优势体现在以下方面:简化API:Seaborn的API设计更加简洁,容易使用,尤其适合初学者。它能够通过几行代码生成漂亮而具有信息含量的图表。美观的默认样式:Seaborn具有吸引人的默认颜色和样式,无需额外的配置即可生成
- 德克萨斯大学奥斯汀分校自然语言处理硕士课程汉化版(第十一周) - 自然语言处理扩展研究
Encarta1993
自然语言处理自然语言处理人工智能
自然语言处理扩展研究1.多语言研究2.语言锚定3.伦理问题1.多语言研究多语言(Multilinguality)是NLP的一个重要研究方向,旨在开发能够处理多种语言的模型和算法。由于不同语言在语法、词汇和语义结构上存在差异,这成为一个复杂且具有挑战性的研究领域。多语言性的研究促进了机器翻译、跨语言信息检索和多语言对话系统等应用的发展。以下是多语言的几个主要研究方向和重要技术:多语言模型的构建,开发
- 【人工智能导论】吃豆人游戏(上):对抗搜索与Minimax算法
Pericles_HAT
算法python人工智能游戏广度搜索
吃豆人实验(ThePac-ManProject)简介ThePac-ManprojectsweredevelopedforUCBerkeley’sintroductoryartificialintelligencecourse,CS188.TheyapplyanarrayofAItechniquestoplayingPac-Man.Theprojectsallowstudentstovisualiz
- 读书笔记|《乌合之众》
玛格丽特昭
导论:思想、观念和信念的改变,是促成文明变革的唯一重要变化。人类最稳定的因素就是他们世代相传的思维定势。人类思想转变的关键时刻:一、宗教、政治和社会信仰的毁灭,而他们是人类文明存在的根基二、现代科学和工业的新发现,它们创造了一种全新的生存和思想条件。在这个过渡时期,最引人注意的特点是各阶层的民众逐渐进入国家政治生活,慢慢成了统治阶层。群众的势力不断壮大,首先得益于某些观念的广泛传播,慢慢地在人们头
- 【区块链 + 人才服务】区块链综合实训平台 | FISCO BCOS应用案例 | FISCO BCOS应用案例
FISCO_BCOS
2023FISCOBCOS产业应用发展报告区块链人才服务
区块链综合实训平台由秉蔚信息面向高校区块链专业开发,是一款集软硬件于一体的实验实训产品。该产品填补了高校区块链相关专业和课程在实验室实训环节的空缺,覆盖了区块链原理与技术、区块链开发、区块链运维、区块链安全、区块链实训案例等核心实训教学资源,分层次地融入到实训教学中去,为高校的区块链实验实训提供领先的一体化实验教学环境。平台内置丰富的实验教学资源,课程涵盖区块链导论、区块链密码学应用、区块链网络与
- 基于 React & TypeScript & Webpack 的微前端应用模板
weixin_33806300
前端webpackjavascriptViewUI
m-fe/react-ts-webpack在Web开发导论/微前端与大前端一文中,笔者简述了微服务与微前端的设计理念以及微前端的潜在可行方案。微服务与微前端,都是希望将某个单一的单体应用,转化为多个可以独立运行、独立开发、独立部署、独立维护的服务或者应用的聚合,从而满足业务快速变化及分布式多团队并行开发的需求。如康威定律(Conway’sLaw)所言,设计系统的组织,其产生的设计和架构等价于组织间
- 【机器学习】朴素贝叶斯方法的概率图表示以及贝叶斯统计中的共轭先验方法
Lossya
机器学习概率论人工智能朴素贝叶斯共轭先验
引言朴素贝叶斯方法是一种基于贝叶斯定理的简单概率模型,它假设特征之间相互独立。文章目录引言一、朴素贝叶斯方法的概率图表示1.1节点表示1.2边表示1.3无其他连接1.4总结二、朴素贝叶斯的应用场景2.1文本分类2.2推荐系统2.3医疗诊断2.4欺诈检测2.5情感分析2.6邮件过滤2.7信息检索2.8生物信息学三、朴素贝叶斯的优点四、朴素贝叶斯的局限性4.1特征独立性假设4.2敏感于输入数据的表示4
- 爬取微博热搜榜
带刺的厚崽
python数据挖掘开发语言
201911081102汤昕宇现代信息检索导论实验一程序运行的截图:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GimpWjCB-1639531088565)(程序运行截图.png)]当时微博热搜的截图[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lDXRgrxa-1639531088568)(微博热搜截图.png)]对应的CSV截
- 使用DuckDuckGo搜索API进行智能信息检索:实用指南与最佳实践
qq_37836323
java前端服务器python
使用DuckDuckGo搜索API进行智能信息检索:实用指南与最佳实践1.引言在当今信息爆炸的时代,快速准确地获取所需信息变得越来越重要。DuckDuckGo作为一个注重隐私的搜索引擎,不仅为普通用户提供了优质的搜索服务,还为开发者提供了强大的搜索API。本文将深入探讨如何利用DuckDuckGo搜索API进行智能信息检索,并提供实用的代码示例和最佳实践。2.DuckDuckGo搜索API概述Du
- GitHub每周最火火火项目(8.26-9.1)
FutureUniant
Github周推github音视频人工智能计算机视觉ai
项目名称:Cinnamon/kotaemon项目介绍:kotaemon是一个基于开源RAG(检索增强生成)的工具,旨在实现与文档的聊天交互。它为用户提供了一种便捷的方式来与自己的文档进行对话,通过检索文档中的信息来回答用户的问题。这使得用户能够更高效地获取文档中的知识,提高信息检索和利用的效率。项目地址:https://github.com/Cinnamon/kotaemon项目名称:frappe
- 2020/2/18,晴。《童年的秘密》读书笔记。P9-27
刘霞辉
2020/2/18,晴。《童年的秘密》读书笔记。P9-27在这一部分主要就《童年秘密》这一本书做了一个概括。全书除“导论”外分为三个部分,共30章。本书主要是针对6岁以下儿童的生理和心理发展及其特点进行探讨,本书一共从四个方面进行了论述:幼儿生理和心理的发展、幼儿教育的原则及环境、幼儿心理歧变的分析、成人与儿童冲突的客服。一,幼儿生理和心理的发展。儿童时期是人一生发展的最重要时期,幼儿处在不断生长
- 国开(电大)2024秋《文献检索与论文写作》综合练习2
电大题园(1)
学习方法经验分享笔记
国开(电大)2024秋《文献检索与论文写作》综合练习2一、单选题(14题)1.什么数据库为用户提供深入到图书章节和内容的全文检索(C)A、知网B、万方C、读秀知识库D、维普解析:“读秀”是由海量全文数据及资料基本信息组成的超大型数据库,为用户提供深入到图书章节和内容的全文检索。2.信息检索根据检索对象不同,一般分为:(D)A、二次检索、高级检索B、分类检索、主题检索C、计算机检索、手工检索D、数据
- 偏见的亮点:认知偏见如何增强推荐系统
量子位AI
人工智能机器学习
认知偏见,曾被视为人类决策过程中的缺陷,现在被认为对学习和决策有潜在的积极影响。然而,在机器学习中,尤其是在搜索和排序系统中,认知偏见的研究仍需改进。尽管有大量研究集中在探讨这些偏见如何影响模型训练和机器行为的道德性,但信息检索领域大多关注于检测偏见及其对搜索行为的影响。这在利用这些认知偏见来增强检索算法方面带来了挑战,这一领域尚未广泛探讨,对研究者而言提供了机遇和挑战。现有的一些方法,如推荐系统
- 【书摘】俞可平丨《社群主义》- 个人与社群
杨原平
原文链接《社群主义》俞可平著中国社会科学出版社;1998-07。---正文约17600字,黑体字为本编标。编录:杨原平。---第二部分个人与社群5.自我与个人p446.社群p557.成员资格p688.公民资格p72目录前言…(1)导论…(1)第一部分当代西方政治哲学的流变…(6)1、功利主义…(7)2、新自由主义…(14)3、社群主义及其对新自由主义的批评…(21)4、新自由主义对社群主义批评的反
- 每天一个数据分析题(五百二十一)- 词袋模型
跟着紫枫学姐学CDA
数据分析题库数据分析
词袋模型(英语:Bag-of-wordsmodel)是个在自然语言处理和信息检索(IR)下被简化的表达模型。以下关于词袋模型(BagofWord,BoW)的说法正确的是?A.将所有词语装进一个袋子里,不考虑其词法和语序的问题,即每个词语都是独立的B.词袋模型只能应用在文件分类C.CBOW是词袋模型的一种D.GloVe模型是词袋模型的一种数据分析认证考试介绍:点击进入数据分析考试大纲下载题目来源于C
- 平均精度(Average Precision,AP)以及AP50、AP75、APs、APm、APl、Box AP、Mask AP等不同阈值和细分类别的评估指标说明
fydw_715
深度学习基础分类数据挖掘人工智能
平均精度(AveragePrecision,AP)是信息检索领域和机器学习评价指标中常用的一个衡量方法,特别广泛用于目标检测任务。它在评估模型的表现时结合了准确率(Precision)和召回率(Recall),为我们提供一个综合性的评估指标。关键概念Precision(准确率):精确率表示在模型预测为正例的所有样本中,实际上为正例的比例。它的计算公式为:Precision=TruePositive
- 《刘澜·领导力30讲》笔记 2
greenorchid
导论02讲:用口诀修炼领导力小胜凭智,大胜靠德。-牛根生领导力不是职位,而是行动。领导力十律:1承担责任“我来”2解决难题“我不知道”3密切联系群众“你觉得呢?”4讲故事“我讲个故事”5当老师“我教你”6从失败中学习“失败了?恭喜你!”7反思“我要改变什么?”8反思“为什么?”9认识自己“我是谁?”10成为自己“我该是谁?”领导力是改变本性的修炼,我们可以用领导力口诀来帮助修炼。
- python机器学习算法--贝叶斯算法
在下小天n
机器学习python机器学习算法
1.贝叶斯定理在20世纪60年代初就引入到文字信息检索中,仍然是文字分类的一种热门(基准)方法。文字分类是以词频为特征判断文件所属类型或其他(如垃圾邮件、合法性、新闻分类等)的问题。原理牵涉到概率论的问题,不在详细说明。sklearn.naive_bayes.GaussianNB(priors=None,var_smoothing=1e-09)#Bayes函数·priors:矩阵,shape=[n
- 学习笔记:我的新媒体运营进阶之路(二)
山山而川_Y
进入到学习的第二阶段,有了前面的导论铺垫后,可以说是渐渐进入了学习状态。工作日每天晚上八点准时开启学习,根据当日任务和学习状态灵活调整学习时间。本阶段主要学习了新媒体应用传播学和着陆页实战课程。新媒体应用传播学:重点学习了线性传播的线性视角、非线性视角、文化视角、影响力六原则。新媒体着陆页实战:在此门课程中学习了着陆页经典的八大结构:价值定位、行动呼唤、产品特征、信用背书、用户评价、风险承诺、常见
- WeKnow-RAG:智能自适应的检索增强生成方法
步子哥
人工智能
在当今快速发展的人工智能领域,检索增强生成(Retrieval-AugmentedGeneration,RAG)方法逐渐成为一种新兴的解决方案。CobusGreyling在他最新的文章中深入探讨了WeKnow-RAG,这一方法通过结合知识图谱和网络搜索技术,极大地提升了大型语言模型(LLMs)在复杂查询中的表现。知识图谱的力量知识图谱(KnowledgeGraphs,KGs)作为信息检索的重要工具
- ChatGPT 3.5/4.0简单使用手册
老童聊AI
明哥陪你学Pythonchatgpt
ChatGPT3.5/4.0是一种先进的人工智能聊天机器人,能够理解和生成自然语言文本,为用户提供信息检索、问题解答、语言翻译等服务。系统要求操作系统:无特定要求,支持主流操作系统。网络连接:需要稳定的网络连接来使用在线服务。安装与注册访问ChatGPT官方网站或下载相应的应用程序。创建账户:根据网站或应用程序的指示完成注册流程。登录:使用注册的账户信息登录。备注:因为国内环境原因,所以我们不得以
- 缓存与数据库的数据一致性解决方案分析
Do&Feel
Java缓存数据库java
在现代应用中,缓存技术的使用广泛且至关重要,主要是为了提高数据访问速度和优化系统整体性能。缓存通过在内存或更快速的存储系统中存储经常访问的数据副本,使得数据检索变得迅速,从而避免了每次请求都需要从较慢的主存储(如硬盘或远程数据库)中读取数据的延迟。这种技术特别适用于读取操作远多于写入操作的场景,如网页浏览、内容分发网络(CDN)和大规模的信息检索系统等。缓存的实现方式多样,包括但不限于内存缓存、分
- 国产智能搜索MindSearch∶ 能够在不到3分钟内收集并整合300多页相关信息?
百态老人
人工智能笔记
MindSearch是一款由上海人工智能实验室推出的国产智能搜索工具,具有强大的自然语言处理和机器学习能力,旨在提供高效、精准的信息检索服务。它能够通过自然语言查询快速在各种文件格式(如PDF、DOCX、TXT)中找到所需信息,并利用人工智能技术提供即时答案和相关搜索结果。MindSearch不仅是一个独立的搜索引擎平台,还提供了一个开源的AI搜索引擎框架,用户可以使用闭源或开源的大语言模型(LL
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc