import cv2
import numpy as np
def ImageHist(image,type):
color=(255,255,255)
windowName='gray'
if type == 31:
color=(255,0,0)
windowName ='B Hist'
elif type==32:
color = (0,255,0)
windowName ='G Hist'
elif type==33:
color = (0,0,255)
windowName ='R Hist'
hist=cv2.calcHist([image],[0],None,[256],[0.0,255.0])
#计算图片直方图 1 图片,2 通道 ,3 mask蒙版 4 size,5 0-255
minV,maxV,minL,maxL=cv2.minMaxLoc(hist)
histImg = np.zeros([256,256,3],np.uint8)
for h in range(256):
intenNormal = int(hist[h]*256/maxV)
cv2.line(histImg,(h,256),(h,256-intenNormal),color)
cv2.imshow(windowName,histImg)
return histImg
img =cv2.imread(r"C:\Users\Administrator\Desktop\222\233.jpg",1)
channels =cv2.split(img)#完成RGB-R G B
print(channels)
for i in range(0,3):
ImageHist(channels[i],31+i)
cv2.waitKey(0)
[array([[ 96, 96, 97, ..., 124, 129, 131],
[ 99, 98, 98, ..., 124, 128, 130],
[101, 101, 100, ..., 125, 126, 127],
...,
[ 69, 83, 57, ..., 28, 16, 13],
[ 81, 83, 114, ..., 53, 54, 53],
[ 83, 91, 129, ..., 55, 62, 67]], dtype=uint8), array([[181, 181, 180, ..., 163, 165, 167],
[182, 181, 181, ..., 163, 164, 166],
[182, 182, 181, ..., 164, 165, 166],
...,
[ 90, 106, 81, ..., 44, 32, 29],
[104, 106, 140, ..., 69, 70, 69],
[106, 116, 155, ..., 73, 80, 83]], dtype=uint8), array([[196, 196, 195, ..., 178, 181, 183],
[197, 196, 196, ..., 178, 180, 182],
[197, 197, 196, ..., 179, 180, 181],
...,
[105, 122, 99, ..., 57, 44, 41],
[119, 122, 157, ..., 85, 86, 85],
[122, 132, 172, ..., 90, 97, 100]], dtype=uint8)]
#灰度图直方图均衡化
import cv2
import numpy as np
img =cv2.imread(r"C:\Users\Administrator\Desktop\222\233.jpg",1)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
dst=cv2.equalizeHist(gray)
cv2.imshow('gray',gray)
cv2.imshow('dst',dst)
cv2.waitKey(0)
#彩色图直方图均衡化
import cv2
import numpy as np
img =cv2.imread(r"C:\Users\Administrator\Desktop\222\233.jpg",1)
(b,g,r) =cv2.split(img)#完成RGB-R G B
bH=cv2.equalizeHist(b)
gH=cv2.equalizeHist(g)
rH=cv2.equalizeHist(r)
result = cv2.merge((bH,gH,rH))#通道合成
cv2.imshow('img',img)
cv2.imshow('result',result)
cv2.waitKey(0)
#YUV 直方图均衡化
import cv2
import numpy as np
img =cv2.imread(r"C:\Users\Administrator\Desktop\222\233.jpg",1)
imgYUV = cv2.cvtColor(img,cv2.COLOR_BGR2YCrCb)
channelYUV = cv2.split(imgYUV)#完成RGB-R G B
channelYUV[0] = cv2.equalizeHist(channelYUV[0])
channels = cv2.merge(channelYUV)#通道合成
result=cv2.cvtColor(channels,cv2.COLOR_YCrCb2BGR)
cv2.imshow('img',img)
cv2.imshow('result',result)
cv2.waitKey(0)
import cv2
import numpy as np
img = cv2.imread(r"C:\Users\Administrator\Desktop\222\233.jpg",1)
for i in range(200,300):
img[i,200] = (255,255,255)
img[i,200+1] = (255,255,255)
img[i,200-1] = (255,255,255)
for i in range(150,250):
img[250,i] = (255,255,255)
img[250+1,i] = (255,255,255)
img[250-1,i] = (255,255,255)
cv2.imwrite(r"C:\Users\Administrator\Desktop\222\233_damaged.jpg",img)
cv2.imshow('image',img)
cv2.waitKey(0)
#1 坏图 2 array 3 inpaint
import cv2
import numpy as np
img = cv2.imread(r"C:\Users\Administrator\Desktop\222\233_damaged.jpg",1)
cv2.imshow('src',img)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
paint = np.zeros((height,width,1),np.uint8)
for i in range(200,300):
paint[i,200] = 255
paint[i,200+1] = 255
paint[i,200-1] = 255
for i in range(150,250):
paint[250,i] = 255
paint[250+1,i] = 255
paint[250-1,i] = 255
cv2.imshow('paint',paint)
#1 src 2 mask
imgDst = cv2.inpaint(img,paint,3,cv2.INPAINT_TELEA)
cv2.imshow('image',imgDst)
cv2.waitKey(0)
# 1 0-255 2 概率
# 本质:统计每个像素灰度 出现的概率 0-255 p
%matplotlib inline
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread(r"C:\Users\Administrator\Desktop\222\233_mini.jpg",1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
count = np.zeros(256,np.float)
for i in range(0,height):
for j in range(0,width):
pixel = gray[i,j]
index = int(pixel)
count[index] = count[index]+1
for i in range(0,255):
count[i] = count[i]/(height*width)
x = np.linspace(0,255,256)
y = count
plt.bar(x,y,0.9,alpha=1,color='b')
plt.show()
cv2.waitKey(0)
import cv2
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
img = cv2.imread(r"C:\Users\Administrator\Desktop\222\233_mini.jpg",1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
count_b = np.zeros(256,np.float)
count_g = np.zeros(256,np.float)
count_r = np.zeros(256,np.float)
for i in range(0,height):
for j in range(0,width):
(b,g,r) = img[i,j]
index_b = int(b)
index_g = int(g)
index_r = int(r)
count_b[index_b] = count_b[index_b]+1
count_g[index_g] = count_g[index_g]+1
count_r[index_r] = count_r[index_r]+1
for i in range(0,256):
count_b[i] = count_b[i]/(height*width)
count_g[i] = count_g[i]/(height*width)
count_r[i] = count_r[i]/(height*width)
x = np.linspace(0,255,256)
y1 = count_b
plt.figure()
plt.bar(x,y1,0.9,alpha=1,color='b')
y2 = count_g
plt.figure()
plt.bar(x,y2,0.9,alpha=1,color='g')
y3 = count_r
plt.figure()
plt.bar(x,y3,0.9,alpha=1,color='r')
plt.show()
cv2.waitKey(0)
# 本质:统计每个像素灰度 出现的概率 0-255 p
# 累计概率
# 1 0.2 0.2
# 2 0.3 0.5
# 3 0.1 0.6
# 256
# 100 0.5 255*0.5 = new
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread(r"C:\Users\Administrator\Desktop\222\233.jpg",1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow('src',gray)
count = np.zeros(256,np.float)
for i in range(0,height):
for j in range(0,width):
pixel = gray[i,j]
index = int(pixel)
count[index] = count[index]+1
for i in range(0,255):
count[i] = count[i]/(height*width)
#计算累计概率
sum1 = float(0)
for i in range(0,256):
sum1 = sum1+count[i]
count[i] = sum1
#print(count)
# 计算映射表
map1 = np.zeros(256,np.uint16)
for i in range(0,256):
map1[i] = np.uint16(count[i]*255)
# 映射
for i in range(0,height):
for j in range(0,width):
pixel = gray[i,j]
gray[i,j] = map1[pixel]
cv2.imshow('dst',gray)
cv2.waitKey(0)
# 本质:统计每个像素灰度 出现的概率 0-255 p
# 累计概率
# 1 0.2 0.2
# 2 0.3 0.5
# 3 0.1 0.6
# 256
# 100 0.5 255*0.5 = new
# 1 统计每个颜色出现的概率 2 累计概率 1 3 0-255 255*p
# 4 pixel
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread(r"C:\Users\Administrator\Desktop\222\233.jpg",1)
# cv2.imshow('src',img)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
count_b = np.zeros(256,np.float)
count_g = np.zeros(256,np.float)
count_r = np.zeros(256,np.float)
for i in range(0,height):
for j in range(0,width):
(b,g,r) = img[i,j]
index_b = int(b)
index_g = int(g)
index_r = int(r)
count_b[index_b] = count_b[index_b]+1
count_g[index_g] = count_g[index_g]+1
count_r[index_r] = count_r[index_r]+1
for i in range(0,255):
count_b[i] = count_b[i]/(height*width)
count_g[i] = count_g[i]/(height*width)
count_r[i] = count_r[i]/(height*width)
#计算累计概率
sum_b = float(0)
sum_g = float(0)
sum_r = float(0)
for i in range(0,256):
sum_b = sum_b+count_b[i]
sum_g = sum_g+count_g[i]
sum_r = sum_r+count_r[i]
count_b[i] = sum_b
count_g[i] = sum_g
count_r[i] = sum_r
#print(count)
# 计算映射表
map_b = np.zeros(256,np.uint16)
map_g = np.zeros(256,np.uint16)
map_r = np.zeros(256,np.uint16)
for i in range(0,256):
map_b[i] = np.uint16(count_b[i]*255)
map_g[i] = np.uint16(count_g[i]*255)
map_r[i] = np.uint16(count_r[i]*255)
# 映射
dst = np.zeros((height,width,3),np.uint8)
for i in range(0,height):
for j in range(0,width):
(b,g,r) = img[i,j]
b = map_b[b]
g = map_g[g]
r = map_r[r]
dst[i,j] = (b,g,r)
cv2.imshow('dst',dst)
cv2.waitKey(0)
# p = p+40
import cv2
import numpy as np
img = cv2.imread(r"C:\Users\Administrator\Desktop\222\233.jpg",1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
# cv2.imshow('src',img)
dst = np.zeros((height,width,3),np.uint8)
for i in range(0,height):
for j in range(0,width):
(b,g,r) = img[i,j]
bb = int(b)+40
gg = int(g)+40
rr = int(r)+40
if bb>255:
bb = 255
if gg>255:
gg = 255
if rr>255:
rr = 255
dst[i,j] = (bb,gg,rr)
cv2.imshow('dst',dst)
cv2.waitKey(0)
#双边滤波
import cv2
img = cv2.imread(r"C:\Users\Administrator\Desktop\222\444.jpg",1)
cv2.imshow('src',img)
dst = cv2.bilateralFilter(img,15,35,35)
cv2.imshow('dst',dst)
cv2.waitKey(0)
import cv2
import numpy as np
img = cv2.imread(r"C:\Users\Administrator\Desktop\222\444.jpg",1)
cv2.imshow('src',img)
dst = cv2.GaussianBlur(img,(5,5),1.5)
cv2.imshow('dst',dst)
cv2.waitKey(0)
#均值 6*6 1 。 * 【6*6】/36 = mean -》P
import cv2
import numpy as np
img = cv2.imread(r"C:\Users\Administrator\Desktop\222\444.jpg",1)
cv2.imshow('src',img)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
dst = np.zeros((height,width,3),np.uint8)
for i in range(3,height-3):
for j in range(3,width-3):
sum_b = int(0)
sum_g = int(0)
sum_r = int(0)
for m in range(-3,3):#-3 -2 -1 0 1 2
for n in range(-3,3):
(b,g,r) = img[i+m,j+n]
sum_b = sum_b+int(b)
sum_g = sum_g+int(g)
sum_r = sum_r+int(r)
b = np.uint8(sum_b/36)
g = np.uint8(sum_g/36)
r = np.uint8(sum_r/36)
dst[i,j] = (b,g,r)
cv2.imshow('dst',dst)
cv2.waitKey(0)
# 中值滤波 3*3
import cv2
import numpy as np
img = cv2.imread(r"C:\Users\Administrator\Desktop\222\233.jpg",1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow('src',img)
dst = np.zeros((height,width,3),np.uint8)
collect = np.zeros(9,np.uint8)
for i in range(1,height-1):
for j in range(1,width-1):
k = 0
for m in range(-1,2):
for n in range(-1,2):
gray = img[i+m,j+n]
collect[k] = gray
k = k+1
# 0 1 2 3 4 5 6 7 8
# 1
for k in range(0,9):
p1 = collect[k]
for t in range(k+1,9):
if p1<collect[t]:
mid = collect[t]
collect[t] = p1
p1 = mid
dst[i,j] = collect[4]
cv2.imshow('dst',dst)
cv2.waitKey(0)