案例基于hadoop 2.73,伪分布式集群
1、引入maven依赖
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0modelVersion>
<groupId>com.hadoopgroupId>
<artifactId>beginnerartifactId>
<version>1.0-SNAPSHOTversion>
<packaging>jarpackaging>
<name>beginnername>
<url>http://maven.apache.orgurl>
<properties>
<project.build.sourceEncoding>UTF-8project.build.sourceEncoding>
properties>
<dependencies>
<dependency>
<groupId>org.apache.hadoopgroupId>
<artifactId>hadoop-coreartifactId>
<version>1.2.1version>
dependency>
<dependency>
<groupId>org.apache.hadoopgroupId>
<artifactId>hadoop-commonartifactId>
<version>2.7.3version>
dependency>
<dependency>
<groupId>org.apache.hadoopgroupId>
<artifactId>hadoop-clientartifactId>
<version>2.7.3version>
dependency>
<dependency>
<groupId>au.com.bytecodegroupId>
<artifactId>opencsvartifactId>
<version>2.4version>
dependency>
dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.pluginsgroupId>
<artifactId>maven-shade-pluginartifactId>
<version>1.2.1version>
<executions>
<execution>
<phase>packagephase>
<goals>
<goal>shadegoal>
goals>
<configuration>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>com.hadoop.FlightsByCarriermainClass>
transformer>
transformers>
configuration>
execution>
executions>
plugin>
plugins>
build>
project>
2、MapReduce Driver代码
是用户与hadoop集群交互的客户端,在此配置MapReduce Job。
package com.hadoop;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class FlightsByCarrier {
public static void main(String[] args) throws Exception {
Job job = new Job();
job.setJarByClass(FlightsByCarrier.class);
job.setJobName("FlightsByCarrier");
TextInputFormat.addInputPath(job, new Path(args[0]));
job.setInputFormatClass(TextInputFormat.class);
job.setMapperClass(FlightsByCarrierMapper.class);
job.setReducerClass(FlightsByCarrierReducer.class);
TextOutputFormat.setOutputPath(job, new Path(args[1]));
job.setOutputFormatClass(TextOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.waitForCompletion(true);
}
}
3、MapReduce Mapper代码
package com.hadoop;
import au.com.bytecode.opencsv.CSVParser;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class FlightsByCarrierMapper extends Mapper{
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
if (key.get() > 0) {
String[] lines = new CSVParser().parseLine(value.toString());
context.write(new Text(lines[8]), new IntWritable(1));
}
}
}
4、MapReduce Reducer代码
package com.hadoop;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class FlightsByCarrierReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
@Override
protected void reduce(Text token, Iterable counts,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable count : counts) {
sum+= count.get();
}
context.write(token, new IntWritable(sum));
}
}
5、利用idea maven打jar包
jar包名称为:beginner-1.0-SNAPSHOT.jar
6、上传到linux虚拟机
代码是在window系统中的idea编写完成,需要上传到Linux虚拟机。
7、运行MapReduce Driver,处理航班数据
hadoop jar beginner-1.0-SNAPSHOT.jar /user/root/2008.csv /user/root/output/flightsCount
运行情况如下:
18/01/09 02:29:52 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
18/01/09 02:29:52 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
18/01/09 02:29:53 INFO input.FileInputFormat: Total input paths to process : 1
18/01/09 02:29:54 INFO mapreduce.JobSubmitter: number of splits:6
18/01/09 02:29:54 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1515491426576_0002
18/01/09 02:29:54 INFO impl.YarnClientImpl: Submitted application application_1515491426576_0002
18/01/09 02:29:55 INFO mapreduce.Job: The url to track the job: http://slave1:8088/proxy/application_1515491426576_0002/
18/01/09 02:29:55 INFO mapreduce.Job: Running job: job_1515491426576_0002
18/01/09 02:30:01 INFO mapreduce.Job: Job job_1515491426576_0002 running in uber mode : false
18/01/09 02:30:01 INFO mapreduce.Job: map 0% reduce 0%
18/01/09 02:30:17 INFO mapreduce.Job: map 39% reduce 0%
18/01/09 02:30:19 INFO mapreduce.Job: map 52% reduce 0%
18/01/09 02:30:21 INFO mapreduce.Job: map 86% reduce 0%
18/01/09 02:30:22 INFO mapreduce.Job: map 100% reduce 0%
18/01/09 02:30:31 INFO mapreduce.Job: map 100% reduce 100%
18/01/09 02:30:32 INFO mapreduce.Job: Job job_1515491426576_0002 completed successfully
18/01/09 02:30:32 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=63087558
FILE: Number of bytes written=127016400
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=689434454
HDFS: Number of bytes written=197
HDFS: Number of read operations=21
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=6
Launched reduce tasks=1
Data-local map tasks=6
Total time spent by all maps in occupied slots (ms)=110470
Total time spent by all reduces in occupied slots (ms)=7315
Total time spent by all map tasks (ms)=110470
Total time spent by all reduce tasks (ms)=7315
Total vcore-milliseconds taken by all map tasks=110470
Total vcore-milliseconds taken by all reduce tasks=7315
Total megabyte-milliseconds taken by all map tasks=113121280
Total megabyte-milliseconds taken by all reduce tasks=7490560
Map-Reduce Framework
Map input records=7009729
Map output records=7009728
Map output bytes=49068096
Map output materialized bytes=63087588
Input split bytes=630
Combine input records=0
Combine output records=0
Reduce input groups=20
Reduce shuffle bytes=63087588
Reduce input records=7009728
Reduce output records=20
Spilled Records=14019456
Shuffled Maps =6
Failed Shuffles=0
Merged Map outputs=6
GC time elapsed (ms)=6818
CPU time spent (ms)=38010
Physical memory (bytes) snapshot=1807056896
Virtual memory (bytes) snapshot=13627478016
Total committed heap usage (bytes)=1370488832
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=689433824
File Output Format Counters
Bytes Written=197
8、查看航班数据
hadoop fs -cat /user/root/output/flightsCount/part-r-00000
结果如下:
9E 262208
AA 604885
AQ 7800
AS 151102
B6 196091
CO 298455
DL 451931
EV 280575
F9 95762
FL 261684
HA 61826
MQ 490693
NW 347652
OH 197607
OO 567159
UA 449515
US 453589
WN 1201754
XE 374510
YV 254930
参考资料:
1、《Hadoop For Dummies》