双重检查锁定与延迟初始化

双重检查锁定的由来

在Java程序中,有时候可能需要推迟一些高开销的对象初始化操作,并且只有在使用这些对象时才进行初始化。此时,程序员可能会采用延迟初始化。下面是非线程安全的延迟初始化:

public class UnsafeLazyInitialization {
    private static Instance instance;
    public static Instance getInstance() {
        if (instance == null) // 1:A线程执行
            instance = new Instance(); // 2:B线程执行
        return instance;
    }
}

在UnsafeLazyInitialization类中,假设A线程执行代码1的同时,B线程执行代码2。此时,线程A可能会看到instance引用的对象还没有完成初始化。

public class SafeLazyInitialization {
    private static Instance instance;
    public synchronized static Instance getInstance() {
        if (instance == null)
            instance = new Instance();
        return instance;
    }
}

由于对getInstance()方法做了同步处理,synchronized将导致性能开销。如果getInstance()方法被多个线程频繁的调用,将会导致程序执行性能的下降。

在早期的JVM中,synchronized(甚至是无竞争的synchronized)存在巨大的性能开销。因此,人们想出了一个“聪明”的技巧:双重检查锁定(Double-Checked Locking):

public class DoubleCheckedLocking {                         // 1
    private static Instance instance;                       // 2
    
    public static Instance getInstance() {                  // 3
        if (instance == null) {                             // 4:第一次检查
            synchronized (DoubleCheckedLocking.class) {     // 5:加锁
                if (instance == null)                       // 6:第二次检查
                    instance = new Instance();              // 7:问题的根源出在这里
            }                                               // 8
        }                                                   // 9
        return instance;                                    // 10
    }                                                       // 11
}

问题的根源

前面的双重检查锁定示例代码的第7行(instance=new Singleton();)创建了一个对象。这一行代码可以分解为如下的3行伪代码:

memory = allocate();  // 1:分配对象的内存空间
ctorInstance(memory);  // 2:初始化对象
instance = memory;    // 3:设置instance指向刚分配的内存地址

上面3行伪代码中的2和3之间,可能会被重排序(在一些JIT编译器上,这种重排序是真实发生的)。2和3之间重排序之后的执行时序如下:

memory = allocate();  // 1:分配对象的内存空间
instance = memory;    // 3:设置instance指向刚分配的内存地址
// 注意,此时对象还没有被初始化!
ctorInstance(memory);  // 2:初始化对象

上面3行伪代码的2和3之间虽然被重排序了,但这个重排序并不会违反intra-thread semantics。这个重排序在没有改变单线程程序执行结果的前提下,可以提高程序的执行性能。

由于单线程内要遵守intra-thread semantics,从而能保证A线程的执行结果不会被改变。但是,当线程A和B按图3-38的时序执行时,B线程将看到一个还没有被初始化的对象。

DoubleCheckedLocking示例代码的第7行(instance=new Singleton();)如果发生重排序,另一个并发执行的线程B就有可能在第4行判断instance不为null。线程B接下来将访问instance所引用的对象,但此时这个对象可能还没有被A线程初始化!

这里A2和A3虽然重排序了,但Java内存模型的intra-thread semantics将确保A2一定会排在A4前面执行。因此,线程A的intra-thread semantics没有改变,但A2和A3的重排序,将导致线程B在B1处判断出instance不为空,线程B接下来将访问instance引用的对象。此时,线程B将会访问到一个还未初始化的对象。

在知晓了问题发生的根源之后,我们可以想出两个办法来实现线程安全的延迟初始化。

  • 1)不允许2和3重排序。
  • 2)允许2和3重排序,但不允许其他线程“看到”这个重排序。

解决方案

基于volatile的解决方案

public class SafeDoubleCheckedLocking {
    private volatile static Instance instance;
    public static Instance getInstance() {
        if (instance == null) {
            synchronized (SafeDoubleCheckedLocking.class) {
                if (instance == null)
                    instance = new Instance(); // instance为volatile,现在没问题了
                }
            }
        return instance;
    }
}

这个方案本质上是通过禁止图3-39中的2和3之间的重排序,来保证线程安全的延迟初始化。

基于类初始化的解决方案

JVM在类的初始化阶段(即在Class被加载后,且被线程使用之前),会执行类的初始化。在执行类的初始化期间,JVM会去获取一个锁。这个锁可以同步多个线程对同一个类的初始化。

public class InstanceFactory {
    private static class InstanceHolder {
        public static Instance instance = new Instance();
    }
    public static Instance getInstance() {
        return InstanceHolder.instance ;  // 这里将导致InstanceHolder类被初始化
    }
}

初始化一个类,包括执行这个类的静态初始化和初始化在这个类中声明的静态字段。根据Java语言规范,在首次发生下列任意一种情况时,一个类或接口类型T将被立即初始化:

  • 1)T是一个类,而且一个T类型的实例被创建。
  • 2)T是一个类,且T中声明的一个静态方法被调用。
  • 3)T中声明的一个静态字段被赋值。
  • 4)T中声明的一个静态字段被使用,而且这个字段不是一个常量字段。
  • 5)T是一个顶级类(Top Level Class,见Java语言规范的§7.6),而且一个断言语句嵌套在T
    内部被执行。

实际应用

HikariCP

HikariDataSource 的 getConnection 方法:

private volatile HikariPool pool;

public Connection getConnection() throws SQLException{
      if (isClosed()) {
         throw new SQLException("HikariDataSource " + this + " has been closed.");
      }

      if (fastPathPool != null) {
         return fastPathPool.getConnection();
      }

      // See http://en.wikipedia.org/wiki/Double-checked_locking#Usage_in_Java
      HikariPool result = pool;
      if (result == null) {
         synchronized (this) {
            result = pool;
            if (result == null) {
               validate();
               LOGGER.info("{} - Starting...", getPoolName());
               try {
                  pool = result = new HikariPool(this);
               }
               catch (PoolInitializationException pie) {
                  if (pie.getCause() instanceof SQLException) {
                     throw (SQLException) pie.getCause();
                  }
                  else {
                     throw pie;
                  }
               }
               LOGGER.info("{} - Start completed.", getPoolName());
            }
         }
      }

      return result.getConnection();
}

注意代码中的注释,再比较一下,跟维基百科里的大同小异。

你可能感兴趣的:(并发编程)