题目描述
给n个人安排座位,先给每个人一个1~n的编号,设第i个人的编号为ai(不同人的编号可以相同),接着从第一个人开始,大家依次入座,第i个人来了以后尝试坐到ai,如果ai被占据了,就尝试ai+1,ai+1也被占据了的话就尝试ai+2,……,如果一直尝试到第n个都不行,该安排方案就不合法。然而有m个人的编号已经确定(他们或许贿赂了你的上司...),你只能安排剩下的人的编号,求有多少种合法的安排方案。由于答案可能很大,只需输出其除以M后的余数即可。
输入输出格式
输入格式:
第一行一个整数T,表示数据组数
对于每组数据,第一行有三个整数,分别表示n、m、M
若m不为0,则接下来一行有m对整数,p1、q1,p2、q2 ,…, pm、qm,其中第i对整数pi、qi表示第pi个人的编号必须为qi
输出格式:
对于每组数据输出一行,若是有解则输出YES,后跟一个整数表示方案数mod M,注意,YES和数之间只有一个空格,否则输出NO
输入输出样例
输入样例#1:
2
4 3 10
1 2 2 1 3 1
10 3 8882
7 9 2 9 5 10
说明
100%的数据满足:1≤T≤10,1≤n≤300,0≤m≤n,2≤M≤109,1≤pi、qi≤n 且保证pi互不相同。
首先需要巨量的观察,题目直接给出的条件太过抽象没法用
我的思路是这样的,显然如果要满足条件,1~n中的每一个位置都要被占据,那显然如果对于每个前缀1~k,编号在1~k之内的人至少要有k个,这显然是个必要条件,然后再仔细一试,发现这也是个充分条件,这是性质1
然后在经过一阵倒腾,还可以发现这个最终结果是不是合法和人来的顺序没有关系,也就是说只要每种编号的数量确定了,最终的结果也就确定了,和具体的编号分配无关,这是性质2
综合性质1和性质2,就可以dp了
先把所有的固定编号的人去掉求一下每个前缀剩下的的人数限制sum[i],如果有某个sum[i]大于n-m那就是NO
dp[i][j]表示前编号1~i有j个人的方法数,枚举编号i的人数k,k至少是0,至多不能使上一位不合法,也就是,j-k不能小于sum[i-1],然后再乘个C(j,k)即可
总的来说
$$ dp[i][j] = \sum_{k=0}^{j-max(0,sum[i-1])}dp[i-1][j-k]\times\binom{j}{k} $$
#include
#include
#include
#include
#include <string>
#include
#include
#include