DLP投影技术

简介
DLP是"Digital Light Procession"的缩写 。它的意思为数字光处理,也就是说这种技术要先把影像讯号经过数字处理,然后再把光投影出来。它是基于德仪公司开发的数字微反射镜器件-DMD来完成显示数字可视信息的最终环节,而DMD则是Digtal Micromirror Device的缩写,字面意思为数字微镜元件,这是指在DLP技术系统中的核心–光学引擎心脏采用的数字微镜晶片,它是在CMOS的标准半导体制程上,加上一个可以调变反射面的旋转机构形成的器件。
说得更具体些,就是DLP投影技术是应用了数字微镜晶片(DMD)来做主要关键元件以实现数字光学处理过程。其原理是将光源藉由一个积分器(Integrator),将光均匀化,通过一个有色彩三原色的色环(ColorWheel),将光分成R、G、B三色,再将色彩由透镜成像在DMD上。以同步讯号的方法,把数字旋转镜片的电讯号,将连续光转为灰阶,配合R、G、B三种颜色而将色彩表现出来,最后在经过镜头投影成像。
DLP是美国德州仪器公司以数字微镜装置DMD芯片作为成像器件,通过调节反射光实现投射图像的一种投影技术。它与液晶投影机有很大的不同,它的成像是通过成千上万个微小的镜片反射光线来实现的。DLP芯片的核心技术一直控制在美国的德州仪器,DLP技术似乎在追逐着IntelInside的道路,因为它要求所有采用DLP技术的投影机产品都必须打上DLP的标志。不管其是否会取得Intel在PC领域那样的成就,至少显示了其领导投影机底层技术的决心。DLP的生产厂家主要为欧美厂商,如ASK、惠普、丽讯等。

DLP投影技术_第1张图片

DLP投影技术优点
DLP投影机的技术是反射式投影技术。反射式DMD器件的应用,DLP投影机拥有反射优势,在对比度和均匀性都非常出色,图像清晰度高、画面均匀、色彩锐利,并且图像噪声消失,画面质量稳定,精确的数字图像可不断再现,而且历久弥新。

由于普通DLP投影机用一片DMD芯片,最明显的优点就是外型小巧,投影机可以做得很紧凑。现市场上所有的1.5公斤以下的迷你型投影机都是DLP式,大多数LCD投影机要超过2.5公斤。

DLP投影机的另一个优点是图像流畅,反差大。这些视频优点使其成为家庭影院世界中之首选品种。有较高的对比度,现在,大多数DLP投影机的对比度可做到600:1到800:1的之间,低价位的也可达450:1。LCD投影机对比度只在400:1附近,而低价位的才250:1。画面的视感冲击强烈,没有像素结构感,形象自然。

DLP投影机还有一个优点是颗粒感弱。在SVGA(800×600)格式分辨率上,DLP投影机的像素结构比LCD弱,只要相对可视距离和投影图像画面大小调得合适,已经看不出像素结构

DLP投影技术缺点
DLP投影机还有一个优点是颗粒感弱。在SVGA(800×600)格式分辨率上,DLP投影机的像素结构比LCD弱,只要相对可视距离和投影图像画面大小调得合适,已经看不出像素结构DLP投影机的色彩效果依靠色轮和DMD芯片运动息息相关,单芯片DLP投影系统采用的反射式结构,特别是在中低端产品中,单芯片DLP投影系统在图像颜色的还原上比采用三原色混合LCD投影机稍逊一筹,色彩不够鲜艳生动。

作为DLP技术的拥有者,德州仪器并不生产投影机等终端产品,而仅仅为厂商提供DMD芯片和视频处理芯片,这在一定程度上保证了DLP投影机市场的竞争的公平性。目前世界上非日系投影机品牌大多采用DLP技术,在日系品牌中包括三菱电机、日立、夏普等品牌中DLP投影机也占据了较为重要的位置,据不完全统计目前采用DLP技术的投影机品牌已经多达80个左右。

色轮
为了方便用户了解DLP技术,德州仪器也制作了一段DEMO视频展示DLP投影机的成像原理(视频点此)。通过视频我们可以看到,当灯泡发出的光线经过聚透镜和色轮后,被分解为R、G、B三原色投射到DMD芯片上,光线再经过DMD镜片的反射后由投影镜头投影成像。
DLP投影技术_第2张图片

色轮(COLOR WHEEL)在DLP投影机中的作用是色彩的分离和处理,只有单片式DLP和双片式DLP投影机需要安装色轮,三片式DLP投影机则不需要色轮。那么色轮又是如何实现色彩的分离和处理的呢?

这需要从光的原理谈起,太阳光、白炽灯光、荧光灯光都是复合光,投影机灯泡发出的光线当然也在复合光的范畴之内。复合光总包含了不同演示、不同频率的光线(单频率光线为激光)。色轮通过高速旋转将复合光过滤成红、绿、蓝三原色光。

色轮的表面是非常薄的金属层,这层金属层采用的是真空镀膜技术,镀膜的厚度根据红绿蓝三色的光谱波长相对应。白色光通过金属镀膜层时,所对应的光谱波长的色彩将透过色轮,其它色彩则被阻挡和吸收,从而完成对白色光的分离和过滤。

目前单片DLP投影机,色彩与亮度是成倒数关系的,亮度提高,则色彩一定会损失,而色彩提高,亮度一定会降低,这是因为DLP投影机的颜色是通过色轮的RGB三色组合而成的,其光效率只能达到60%。当然,要提高光效率,可以用在色轮上增加一片无色的滤光片来实现。增加无色滤光片后,光效率可以提高20%左右,但由于无色滤光片透过的是白光,叠加在三原色光上,使画面比其原始的表现要明亮些,以至降低了色彩饱和度,使DLP的画面表现的色彩单薄,并且产生抖动或者说是闪烁感。

当然,色轮实现色彩的分离和过滤需要通过色轮的高速工作运转来实现的。据了解,最早的色轮每秒60转,也叫做叫1倍速转速。1倍速色轮RGB每个颜色每秒钟旋转60次,意味着颜色出现的频率是60Hz。有关试验表明,色轮转速为150-250Hz时,很少有人能看到“彩虹效应”,而超过300Hz时,基本上就没有人能够看到了。

由于转速有限,同时DMD中的微镜的工作原理(DMD工作原理我们会在下一页中进行详细秒速),早期的DLP投影机极易出现彩虹现象。彩虹现象是指观众会看到DLP投影机的画面中物体的边缘有红绿蓝色的拖影。当然,能否看到彩虹现象不仅取决于投影机的性能,还和不同的人眼有关,据调查大部分观众看不到到DLP投影机的彩虹现象,不过对于能看到彩虹现象的观众来说,如此之差的画面表现效果显然是难以接受的。

为了解决彩虹现象,各大投影机厂商便在色轮上做足了功夫,最简洁有效的方法便是提升色轮的转速。从早期的1倍速提升至目前的6倍速,目前的色轮最高转速已经能达到360转每秒,即360Hz。6倍速的色轮基本上消灭了彩虹现象,但是由于成本和技术的限制,目前大多数投影机采用的还是4倍速色轮。

除了提升色轮的转速,DLP投影机制造商们还在增加色轮的段数。早期的色轮由红绿蓝三段式组成,不仅容易产生彩虹现象,光的利用率也只有60%左右,这也是为什么早期的DLP投影机亮度始终在几百流明以下徘徊的原因。后来德州仪器和DLP投影机制造商又先后推出了四段式、五段式、六段式、七段式、八段式色轮……那么,增加的段数都是哪些颜色呢?增加色轮的段数又有什么好处呢?

其中四段式色轮是在传统的三段式色轮增加了一段无色的滤光片,光效率可以提升了20%左右。但是由于无色滤光片透过的是白光,叠加在三原色光上,使画面比其原始的表现要明亮些。这种通过增加无色滤片(通常说法为白色段)的方法虽然增加了投影机的亮度,但是投影机的色彩饱和度却有了明显下降。因为透明滤片经过时,会冲淡前面的色彩,并且会造成有白点闪过的错觉,因此会让人感觉到画面抖动。这也是DLP投影机所被诟病的另外一个问题了——“色彩亮度”偏低。关于色彩亮度的问题也可以点此查阅。

五段式色轮是在四段式色轮上增加了黄色滤片,有效的利用了灯泡在580nm波长中的能量,明基将这种色轮称为“黄金色轮”,东芝将这种色轮称为“旋彩轮”……不同的厂商有不同的称呼。五段式色轮提升了DLP投影机的色彩表现,但是画质提升有限,画面抖动的现象也依然存在。

六段式色轮分为好几种,不同的DLP投影机制造商生产的六段式色轮可能都不相同。在各种六段式色轮中,其中应用最多的便是双重三段式色轮,这种色轮采用的是红绿蓝红绿蓝(RGBRGB)双重色段的排列方式,在RGB三段色轮的基础上,又增加了RGB滤片各一段。这样设计最大的好处便是提升了RGB颜色出现的频率,比如在1倍速色轮中RGB颜色出现的频率由三段式的60Hz提升到了120Hz。当然,由于取消了白色滤光片,采用6段式色轮的投影机亮度也大大下降。

而七段式色轮和八段式色轮由于应用较少,我们便不作讨论。下面我们来了解另外两种色轮,SCR增益色轮和极致色彩所采用的色轮。

SCR(Sequential Color Recapture)也称连续色彩补偿技术,其基本原理与以上色轮技术相似,不同之处在于色轮表面采用阿基米德原理螺旋状光学镀膜,集光柱(光通道)采用特殊的增益技术,可以补偿部分反射光,使系统亮度有较大提高(约40%)。但该色轮的处理技术相对较复杂,目前只有少数投影机厂家在产品中采用。

极致色彩技术(BrilliantColor)是德州仪器在2005年宣布问世的新型色彩处理增强技术。简单来说,极致色彩技术便是采用三原色和三补色结合的色轮,以及适当的色彩调配算法电路,以达到提升单片式DLP投影机色彩显示能力的目的。不过需要注意的是,德州仪器仅仅提出了这一技术理念,各家DLP投影机制造商根据实际情况的不同设计的极致色彩技术色轮也各不相同,所以成像质量也有很大的差别。但是极致色彩技术引领DLP投影机从传统的三色处理全面进入到多色处理的新时代,注定将会在DLP投影机的发展史中留下浓厚的一笔。

DMD芯片
DLP投影技术_第3张图片

DMD的作用就是将色轮透过来的三原色光混合在一起,并且通过数据控制转换为彩色图像。虽然看似简单,但是技术含量极高,那么DMD又是如何实现这一功能的呢?

DMD是一种整合的微机电上层结构电路单元,利用COMS SRAM记忆晶胞所制成。DMD上层结构的制造是从完整CMOS内存电路开始,再透过光罩层的使用,制造出铝金属层和硬化光阻层交替的上层结构,铝金属层包括地址电极、绞链(hinge)、轭(yoke)和反射镜,硬化光阻层做为牺牲层(sacrificiallayer),用来形成两个空气间隙。铝金属经过溅镀沉积及等离子蚀刻处理,牺牲层则经过等离子去灰(plasma—ashed)处理,制造出层间的空气间隙。

如果从技术角度来看,DMD芯片的构造包括了电子电路、机械和光学三个方面。其中电子电路部分为控制电路,机械部分为控制镜片转动的结构部分,光学器件部分便是指镜片部分。当DMD正常工作的时候,光线经过DMD芯片,DMD表面布满了体积微小的可转动镜片便会通过转动来反射光线,每个镜片的旋转都是由电路来控制的。每个镜子一次旋转只反射一种颜色(例如,投射紫颜色像素的微镜只负责在投影面上反射红蓝光,而投射桔红色像素的微镜只负责在投影面上按比例反射红和绿光(红色的比例高、绿色比例低),镜子的旋转速度可达到上千转,如此之多的镜子以如此之快的速度进行变化,光线通过镜头投射到屏幕上以后,给人的视觉器官造成错觉,人的肉眼错将快速闪动的三原色光混在一起,于是在投影的图像上看到混合后的颜色。

如果你只想简单的了解DMD的工作原理,上一段文字已经够用了。如果你想穷根究底,下面我们就来一起来全面而详细的了解DMD芯片的构造和工作方式。

DLP投影技术_第4张图片

在DMD芯片的最上面由数十万片面积为14×14微米、比头发断面还小的微镜片组成,增加DMD内微镜片的数量,即可提高产品的分辨率,而不须改变微镜片的大小 (例如分辨率为1024×768的投影机DMD芯片上有786432个小镜片),这些镜面经由下面被称为“轭”的装置链接,并被“扭力铰链”控制,可以左右翻转。前期的镜片的翻转角度仅为10°,后来德州仪器对镜片下方的链接部分进行了改善和简化,镜片的翻转角度提升到了12°。虽然仅仅提升了2度,但是成像过程中的杂散光线的影响被大大降低,对比度指标进一步提高。当记忆晶胞处于“ON”状态时,反射镜会旋转至+12度,若记忆晶胞处于“OFF”状态,反射镜会旋转至-12度。只要结合DMD以及适当光源和投影光学系统,反射镜就会把入射光反射进入或是离开投影镜头的透光孔,使得“0N”状态的反射镜看起来非常明亮,“0FF”状态的反射镜看起来很黑暗。利用二位脉冲宽度调变可以得到灰阶效果,如果使用固定式或旋转式彩色滤镜,再搭配一颗或三颗DMD芯片,即可得到彩色显示效果。配有一颗DMD芯片的DLP投影系统称为“单片DLP投影系统”,经色轮过滤后的光,至少可生成1670万种颜色。DMD的输入是由电流代表的电子字符,输出则是光学字符,这种光调变或开关技术又称为二位脉冲宽度调变,它会把8位字符送至DMD的每个数字光开关输入端,产生28或256个灰阶。

目前DMD本身的光学有效面积也大大增强,已经能占到整个芯片表面积的90%以上,有效提升了光学利用率。另外还有一点需要进行了解:通过对每一个镜片下的存储单元以二进制平面信号进行电子化寻址,DMD阵列上的每个镜片被以静电方式倾斜为开或关态。决定每个镜片倾斜在哪个方向上为多长时间的技术被称为脉冲宽度调制(PWM)。

镜片下方的“轭”和“扭力铰链”采用被称为“面微加工(surface micromachining)多晶矽”方法制作,具有机构稳固性、灵活性强,成本低廉的特点。具体实现步骤是为机械单元选用铝合金材料,并以传统光阻作为牺牲空间。所有工作都在200℃以下完成,因此在晶片上增加MEMS时不会影响金属化制程或电晶体,也不会影响已经完成的CMOS电路。这种方法是MEMS微型反射镜的标准基础。同时又很好的解决了半导体制程、为机械制程和光学制程间肯能的相互破坏的问题。这种方法与其他MEMS制造方法全然不同, TI是目前仍采用这种方法的唯一一家公司。

DMD芯片主要的工作方式是依据后端电路传递给CMOS芯片的不同信号,调控片上每个微镜的旋转位置,进而使得照射在微镜上的光线有选择的反射道不同方向。作为微型数字光学处理器件,DMD不仅是DLP投影机的核心组建,而且也被广泛应用到了印刷、可研等诸多需要数字光开关的领域,成为了微电子机械学MEMS最成功的产品之一。

DarkChip——很多投影业内人士对这个词也比较熟悉,我们经常可以看到某些高端的1080p DLP投影机采用的是DarkChip4芯片组,那么其又是怎么回事呢?还有某些投影机特意标称产品是“数据投影机”或者“视频投影机”,他们之间采用的都是DLP技术,为什么会称呼不同呢?

采用第一代DMD的DLP投影机仅仅是针对商务应用,分辨率是848X600,可以兼顾800X600的SVGA电脑标准和848x480的480p(16:9)视频标准。这一代的DMD微镜偏转角度为10度,对比度400:1至800:1不等。之后DLP投影机推出的第二代DMD芯片便开始进入家庭影院市场(之前的家庭影院投影机大多采用CRT技术),第二代芯片镜片的偏转角度提升到了12度,分辨率也提升到了720p。

也就是从第二代DMD芯片开始,DLP投影机开始分为数据投影(商用)和视频投影(家用)两种按照应用方向发展的路线。德州仪器也对DMD芯片进行了最大的技术变革——将微镜非光学面的金属统统处理成黑色,此举大大降低来自金属反射出的杂散光,空前提升了DLP投影机的对比度,这一技术被称为“Darkchip 1”。当然,Darkchip也在不断的发展中,2007年9月德州仪器发布了最新一代“超黑”技术DarkChip 4,可将原始对比度提升高达30%。

你可能感兴趣的:(机器视觉)