一个进程对应一个jvm实例,一个运行时数据区,又包含多个线程,这些线程共享了方法区和堆,每个线程包含了程序计数器、本地方法栈和虚拟机栈。
编写HeapDemo/HeapDemo1代码
public class HeapDemo {
public static void main(String[] args) {
System.out.println("start...");
try {
Thread.sleep(1000000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("end...");
}
}
首先对虚拟机进行配置,如图 Run-Edit configurations
在jdk的bin目录下找到jvisualvm 运行(或者直接终端运行jvisualvm),查看进程,可以看到我们设置的配置信息
可以看到HeapDemo配置-Xms10m, 分配的10m被分配给了新生代3m和老年代7m
public class SimpleHeap {
private int id;//属性、成员变量
public SimpleHeap(int id) {
this.id = id;
}
public void show() {
System.out.println("My ID is " + id);
}
public static void main(String[] args) {
SimpleHeap sl = new SimpleHeap(1);
SimpleHeap s2 = new SimpleHeap(2);
int[] arr = new int[10];
Object[] arr1 = new Object[10];
}
}
JDK 7以前: 新生区+养老区+永久区
JDK 8以后: 新生区+养老区+元空间
Java堆区用于存储java对象实例,堆的大小在jvm启动时就已经设定好了,可以通过 "-Xmx"和 "-Xms"来进行设置
-Xms 用于表示堆的起始内存,等价于 -XX:InitialHeapSize
-Xms 用来设置堆空间(年轻代+老年代)的初始内存大小
-Xmx 用于设置堆的最大内存,等价于 -XX:MaxHeapSize
一旦堆区中的内存大小超过 -Xmx所指定的最大内存时,将会抛出OOM异常
通常会将-Xms和-Xmx两个参数配置相同的值,其目的就是为了能够在java垃圾回收机制清理完堆区后不需要重新分隔计算堆区的大小,从而提高性能
默认情况下,初始内存大小:物理内存大小/64;最大内存大小:物理内存大小/4
查看设置的参数:
public class HeapSpaceInitial {
public static void main(String[] args) {
//返回Java虚拟机中的堆内存总量
long initialMemory = Runtime.getRuntime().totalMemory() / 1024 / 1024;
//返回Java虚拟机试图使用的最大堆内存量
long maxMemory = Runtime.getRuntime().maxMemory() / 1024 / 1024;
System.out.println("-Xms : " + initialMemory + "M");//-Xms : 245M
System.out.println("-Xmx : " + maxMemory + "M");//-Xmx : 3641M
System.out.println("系统内存大小为:" + initialMemory * 64.0 / 1024 + "G");//系统内存大小为:15.3125G
System.out.println("系统内存大小为:" + maxMemory * 4.0 / 1024 + "G");//系统内存大小为:14.22265625G
try {
Thread.sleep(1000000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
设置堆大小为600m,打印出的结果为575m,这是因为幸存者区S0和S1各占据了25m,但是他们始终有一个是空的,存放对象的是伊甸园区和一个幸存者区
java.lang.OutOfMemoryError: Java heap space
代码示例:
/**
* -Xms600m -Xmx600m
*/
public class OOMTest {
public static void main(String[] args) {
ArrayList<Picture> list = new ArrayList<>();
while(true){
try {
Thread.sleep(20);
} catch (InterruptedException e) {
e.printStackTrace();
}
list.add(new Picture(new Random().nextInt(1024 * 1024)));
}
}
}
class Picture{
private byte[] pixels;
public Picture(int length) {
this.pixels = new byte[length];
}
}
存储在JVM中的java对象可以被划分为两类:
Java堆区进一步细分可以分为年轻代(YoungGen)和老年代(OldGen)
配置新生代与老年代在堆结构的占比
在hotSpot中,Eden空间和另外两个Survivor空间缺省所占的比例是8:1:1(测试的时候是6:1:1),开发人员可以通过选项 -XX:SurvivorRatio 调整空间比例,如-XX:SurvivorRatio=8
几乎所有的Java对象都是在Eden区被new出来的
绝大部分的Java对象都销毁在新生代了(IBM公司的专门研究表明,新生代80%的对象都是“朝生夕死”的)
可以使用选项-Xmn设置新生代最大内存大小(这个参数一般使用默认值就好了)
测试代码
/**
* -Xms600m -Xmx600m
*
* -XX:NewRatio : 设置新生代与老年代的比例。默认值是2.
* -XX:SurvivorRatio :设置新生代中Eden区与Survivor区的比例。默认值是8
* -XX:-UseAdaptiveSizePolicy :关闭自适应的内存分配策略 '-'关闭,'+'打开 (暂时用不到)
* -Xmn:设置新生代的空间的大小。 (一般不设置)
*
*/
public class EdenSurvivorTest {
public static void main(String[] args) {
System.out.println("我只是来打个酱油~");
try {
Thread.sleep(1000000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
为新对象分配内存是件非常严谨和复杂的任务,JVM的设计者们不仅需要考虑内存如何分配、在哪里分配的问题,并且由于内存分配算法与内存回收算法密切相关,所以还需要考虑GC执行完内存回收后是否会在内存空间中产生内存碎片。
总结
针对幸存者s0,s1区:复制之后有交换,谁空谁是to
关于垃圾回收:频繁在新生区收集,很少在养老区收集,几乎不再永久区/元空间收集。
public class HeapInstanceTest {
byte[] buffer = new byte[new Random().nextInt(1024 * 200)];
public static void main(String[] args) {
ArrayList<HeapInstanceTest> list = new ArrayList<HeapInstanceTest>();
while (true) {
list.add(new HeapInstanceTest());
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
JVM在进行GC时,并非每次都针对上面三个内存区域(新生代、老年代、方法区)一起回收的,大部分时候回收都是指新生代。
针对hotSpot VM的实现,它里面的GC按照回收区域又分为两大种类型:一种是部分收集(Partial GC),一种是整堆收集(Full GC)
部分收集:不是完整收集整个Java堆的垃圾收集。其中又分为:
新生代收集(Minor GC/Young GC):只是新生代的垃圾收集
老年代收集(Major GC/Old GC):只是老年代的垃圾收集
混合收集(Mixed GC):收集整个新生代以及部分老年代的垃圾收集
整堆收集(Full GC):收集整个java堆和方法区的垃圾收集
年轻代GC(Minor GC)触发机制:
老年代GC(Major GC/Full GC)触发机制
指发生在老年代的GC,对象从老年代消失时,Major GC 或者 Full GC 发生了
出现了Major GC,经常会伴随至少一次的Minor GC(不是绝对的,在Parallel Scavenge 收集器的收集策略里就有直接进行Major GC的策略选择过程)
Major GC速度一般会比Minor GC慢10倍以上,STW时间更长
如果Major GC后,内存还不足,就报OOM了
Full GC触发机制
触发Full GC执行的情况有以下五种
①调用System.gc()时,系统建议执行Full GC,但是不必然执行
②老年代空间不足
③方法区空间不足
④通过Minor GC后进入老年代的平均大小小于老年代的可用内存
⑤由Eden区,Survivor S0(from)区向S1(to)区复制时,对象大小由于To Space可用内存,则把该对象转存到老年代,且老年代的可用内存小于该对象大小
说明:Full GC 是开发或调优中尽量要避免的,这样暂停时间会短一些
代码演示
Young GC ->Full GC -> OOM
/** 测试GC分代回收
* 测试MinorGC 、 MajorGC、FullGC
* -Xms9m -Xmx9m -XX:+PrintGCDetails
*/
public class GCTest {
public static void main(String[] args) {
int i = 0;
try {
List<String> list = new ArrayList<>();
String a = "testGC";
while (true) {
list.add(a);
a = a + a;
i++;
}
} catch (Throwable t) {
t.printStackTrace();
System.out.println("遍历次数为:" + i);
}
}
}
为什么要把Java堆分代?不分代就不能正常工作了么
经研究,不同对象的生命周期不同。70%-99%的对象都是临时对象。
其实不分代完全可以,分代的唯一理由就是优化GC性能。如果没有分代,那所有的对象都在一块,就如同把一个学校的人都关在一个教室。GC的时候要找到哪些对象没用,这样就会对堆的所有区域进行扫描,而很多对象都是朝生夕死的,如果分代的话,把新创建的对象放到某一地方,当GC的时候先把这块存储“朝生夕死”对象的区域进行回收,这样就会腾出很大的空间出来。
如果对象在Eden出生并经过第一次Minor GC后依然存活,并且能被Survivor容纳的话,将被移动到Survivor空间中,把那个将对象年龄设为1,对象在Survivor区中每熬过一次MinorGC,年龄就增加一岁,当它的年龄增加到一定程度(默认15岁,其实每个JVM、每个GC都有所不同)时,就会被晋升到老年代中
针对不同年龄段的对象分配原则如下:
优先分配到Eden
大对象直接分配到老年代
长期存活的对象分配到老年代
动态对象年龄判断
空间分配担保
代码示例
分配60m堆空间,新生代 20m ,Eden 16m, s0 2m, s1 2m,buffer对象20m,Eden 区无法存放buffer, 直接晋升老年代
/** 测试:大对象直接进入老年代
* -Xms60m -Xmx60m -XX:NewRatio=2 -XX:SurvivorRatio=8 -XX:+PrintGCDetails
*/
public class YoungOldAreaTest {
// 新生代 20m ,Eden 16m, s0 2m, s1 2m
// 老年代 40m
public static void main(String[] args) {
//Eden 区无法存放buffer 晋升老年代
byte[] buffer = new byte[1024 * 1024 * 20];//20m
}
}
为什么有TLAB(Thread Local Allocation Buffer)
什么是TLAB
说明
代码演示
/**
* 测试-XX:UseTLAB参数是否开启的情况:默认情况是开启的
*/
public class TLABArgsTest {
public static void main(String[] args) {
System.out.println("我只是来打个酱油~");
try {
Thread.sleep(1000000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
-XX:PrintFlagsInitial
: 查看所有参数的默认初始值
-XX:PrintFlagsFinal
:查看所有的参数的最终值(可能会存在修改,不再是初始值)
具体查看某个参数的指令:
-Xms
: 初始堆空间内存(默认为物理内存的1/64)
-Xmx
: 最大堆空间内存(默认为物理内存的1/4)
-Xmn: 设置新生代大小(初始值及最大值)
-XX:NewRatio
: 配置新生代与老年代在堆结构的占比
-XX:SurvivorRatio
:设置新生代中Eden和S0/S1空间的比例
-XX:MaxTenuringThreshold
:设置新生代垃圾的最大年龄(默认15)
-XX:+PrintGCDetails
:输出详细的GC处理日志
-XX:HandlePromotionFailure
:是否设置空间分配担保
说明
在发生Minor Gc之前,虚拟机会检查老年代最大可用的连续空间是否大于新生代所有对象的总空间。
如果大于,则此次Minor GC是安全的
如果小于,则虚拟机会查看-XX:HandlePromotionFailure设置值是否允许担保失败。(JDK 7以后的规则HandlePromotionFailure可以认为就是true)
如果HandlePromotionFailure=true,那么会继续检查老年代最大可用连续空间是否大于历次晋升到老年代的对象的平均大小。
√如果HandlePromotionFailure=false,则改为进行一次Full GC。
在JDK6 Update24之后(JDK7),HandlePromotionFailure参数不会再影响到虚拟机的空间分配担保策略,观察openJDK中的源码变化,虽然源码中还定义了HandlePromotionFailure参数,但是在代码中已经不会再使用它。JDK6 Update24之后的规则变为只要老年代的连续空间大于新生代对象总大小或者历次晋升的平均大小就会进行Minor GC,否则将进行Full GC。
在《深入理解Java虚拟机》中关于Java堆内存有这样一段描述:随着JIT编译期的发展与逃逸分析技术逐渐成熟,栈上分配、标量替换优化技术将会导致一些微妙的变化,所有的对象都分配到堆上也渐渐变得不那么“绝对”了。
在Java虚拟机中,对象是在Java堆中分配内存的,这是一个普遍的常识。但是,有一种特殊情况,那就是如果经过逃逸分析(Escape Analysis)后发现,一个对象并没有逃逸出方法的话,那么就可能被优化成栈上分配。这样就无需在堆上分配内存,也无须进行垃圾回收了。这也是最常见的堆外存储技术。
此外,前面提到的基于OpenJDK深度定制的TaoBaoVM,其中创新的GCIH(GCinvisible heap)技术实现off-heap,将生命周期较长的Java对象从heap中移至heap外,并且GC不能管理GCIH内部的Java对象,以此达到降低GC的回收频率和提升GC的回收效率的目的。
如何将堆上的对象分配到栈,需要使用逃逸分析手段。
这是一种可以有效减少Java程序中同步负载和内存堆分配压力的跨函数全局数据流分析算法。
通过逃逸分析,Java Hotspot编译器能够分析出一个新的对象的引用的使用范围从而决定是否要将这个对象分配到堆上。
逃逸分析的基本行为就是分析对象动态作用域:
如何快速的判断是否发生了逃逸分析,就看new的对象实体是否有可能在方法外被调用
代码分析
public void method(){
V v = new V();
//use V
//......
v = null;
}
没有发生逃逸的对象,则可以分配到栈上,随着方法执行的结束,栈空间就被移除。
public static StringBuffer createStringBuffer(String s1,String s2){
StringBuffer sb = new StringBuffer();
sb.append(s1);
sb.append(s2);
return sb;
}
由于上述方法返回的sb在方法外被使用,发生了逃逸,上述代码如果想要StringBuffer sb不逃出方法,可以这样写:
public static String createStringBuffer(String s1,String s2){
StringBuffer sb = new StringBuffer();
sb.append(s1);
sb.append(s2);
return sb.toString();
}
/**
* 逃逸分析
*
* 如何快速的判断是否发生了逃逸分析,就看new的对象实体是否有可能在方法外被调用。
*/
public class EscapeAnalysis {
public EscapeAnalysis obj;
/*
方法返回EscapeAnalysis对象,发生逃逸
*/
public EscapeAnalysis getInstance(){
return obj == null? new EscapeAnalysis() : obj;
}
/*
为成员属性赋值,发生逃逸
*/
public void setObj(){
this.obj = new EscapeAnalysis();
}
//思考:如果当前的obj引用声明为static的?仍然会发生逃逸。
/*
对象的作用域仅在当前方法中有效,没有发生逃逸
*/
public void useEscapeAnalysis(){
EscapeAnalysis e = new EscapeAnalysis();
}
/*
引用成员变量的值,发生逃逸
*/
public void useEscapeAnalysis1(){
EscapeAnalysis e = getInstance();
//getInstance().xxx()同样会发生逃逸
}
}
参数设置
在JDK 6u23版本之后,HotSpot中默认就已经开启了逃逸分析
如果使用了较早的版本,开发人员可以通过
结论
开发中能使用局部变量的,就不要使用在方法外定义
代码优化
使用逃逸分析,编译器可以对代码做如下优化:
栈上分配
:将堆分配转化为栈分配。如果一个对象在子线程中被分配,要使指向该对象的指针永远不会逃逸,对象可能是栈分配的候选,而不是堆分配同步省略
:如果一个对象被发现只能从一个线程被访问到,那么对于这个对象的操作可以不考虑同步分离对象或标量替换
:有的对象可能不需要作为一个连续的内存结构存在也可以被访问到,那么对象的部分(或全部)可以不存储在内存,而是存储在CPU寄存器中。代码分析
以下代码,关闭逃逸分析(-XX:-DoEscapeAnalysi),维护10000000个对象,如果开启逃逸分析,只维护少量对象(JDK7 逃逸分析默认开启)
/**
* 栈上分配测试
* -Xmx1G -Xms1G -XX:-DoEscapeAnalysis -XX:+PrintGCDetails
*/
public class StackAllocation {
public static void main(String[] args) {
long start = System.currentTimeMillis();
for (int i = 0; i < 10000000; i++) {
alloc();
}
// 查看执行时间
long end = System.currentTimeMillis();
System.out.println("花费的时间为: " + (end - start) + " ms");
// 为了方便查看堆内存中对象个数,线程sleep
try {
Thread.sleep(1000000);
} catch (InterruptedException e1) {
e1.printStackTrace();
}
}
private static void alloc() {
User user = new User();//未发生逃逸
}
static class User {
}
}
/**
* 同步省略说明
*/
public class SynchronizedTest {
public void f() {
Object hollis = new Object();
synchronized(hollis) {
System.out.println(hollis);
}
}
//代码中对hollis这个对象进行加锁,但是hollis对象的生命周期只在f()方法中
//并不会被其他线程所访问控制,所以在JIT编译阶段就会被优化掉。
//优化为 ↓
public void f2() {
Object hollis = new Object();
System.out.println(hollis);
}
}
public class ScalarTest {
public static void main(String[] args) {
alloc();
}
public static void alloc(){
Point point = new Point(1,2);
}
}
class Point{
private int x;
private int y;
public Point(int x,int y){
this.x = x;
this.y = y;
}
}
以上代码,经过标量替换后,就会变成
public static void alloc(){
int x = 1;
int y = 2;
}
可以看到,Point这个聚合量经过逃逸分析后,发现他并没有逃逸,就被替换成两个标量了。那么标量替换有什么好处呢?就是可以大大减少堆内存的占用。因为一旦不需要创建对象了,那么就不再需要分配堆内存了。
标量替换为栈上分配提供了很好的基础。
测试代码
/**
* 标量替换测试
* -Xmx100m -Xms100m -XX:+DoEscapeAnalysis -XX:+PrintGC -XX:-EliminateAllocations
*/
public class ScalarReplace {
public static class User {
public int id;//标量(无法再分解成更小的数据)
public String name;//聚合量(String还可以分解为char数组)
}
public static void alloc() {
User u = new User();//未发生逃逸
u.id = 5;
u.name = "www.atguigu.com";
}
public static void main(String[] args) {
long start = System.currentTimeMillis();
for (int i = 0; i < 10000000; i++) {
alloc();
}
long end = System.currentTimeMillis();
System.out.println("花费的时间为: " + (end - start) + " ms");
}
}