leetcode之Perfect Squares

Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, …) which sum to n.

For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.
题目描述:给定一个正整数n,找到最少的平方数使得和为n
思路:采用动态规划的解法,设dp[i]表示组成i的最少平方数的个数,则可以得到如下的递推关系式:
dp[i] = min(dp[i-j*j]+1), j的范围为:[i,sqrt(i)]
代码如下:

class Solution {
public:
    int numSquares(int n) {
        vector<int>dp(n+1,n+1);
        dp[0] = 0;
        for(int i = 1; i <=n; ++i){
            for(int j = 1; j <=sqrt(i); ++j){
                dp[i] = min(dp[i],dp[i-j*j]+1);
            }
        }
        return dp[n];
    }
};

当然,也有数学的找规律的方法,代码如下:

class Solution {
public:
    int is_square(int n){  
        int temp = (int) sqrt(n);  
        return temp * temp == n;  
    }  
    int numSquares(int n) {  
        while ((n & 3) == 0) //n%4 == 0  
            n >>= 2;  
        if ((n & 7) == 7) return 4; //n % 8 == 7  
        if(is_square(n)) return 1;  
        int sqrt_n = (int) sqrt(n);  
        for(int i = 1; i<= sqrt_n; i++){  
            if (is_square(n-i*i)) return 2;  
        }  
        return 3;  
    }  
};

你可能感兴趣的:(leetcode,leetcode,algorithm,动态规划)