Java并发--AQS共享模式

Java并发–AQS共享模式

文章目录

  • Java并发--AQS共享模式
    • CountDownLatch
      • 案例
      • 源码分析
      • 分析案例
      • **`await()`**
      • **`countDown()`**
    • CyclicBarrier
      • 源码分析
    • Semaphore
    • 参考

CountDownLatch

CountDownLatch 这个类是比较典型的 AQS 的共享模式的使用,这是一个高频使用的类。latch 的中文意思是门栓、栅栏,具体怎么解释我就不废话了,大家随意,看两个例子就知道在哪里用、怎么用了。

案例

假设我们有 N ( N > 0 ) 个任务,用 N 来初始化一个 CountDownLatch,然后将这个 latch 的引用传递到各个线程中,在每个线程完成了任务后,调用 latch.countDown() 代表完成了一个任务。

调用 latch.await() 的方法的线程会阻塞,直到所有的任务完成。

class Driver2 {
      // ...
    void main() throws InterruptedException {
     
        CountDownLatch doneSignal = new CountDownLatch(N);
        Executor e = Executors.newFixedThreadPool(8);

        // 创建 N 个任务,提交给线程池来执行
        for (int i = 0; i < N; ++i) // create and start threads
            e.execute(new WorkerRunnable(doneSignal, i));

        // 等待所有的任务完成,这个方法才会返回
        doneSignal.await();           // wait for all to finish
    }
}

class WorkerRunnable implements Runnable {
     
    private final CountDownLatch doneSignal;
    private final int i;

    WorkerRunnable(CountDownLatch doneSignal, int i) {
     
        this.doneSignal = doneSignal;
        this.i = i;
    }

    public void run() {
     
        try {
     
            doWork(i);
            // 这个线程的任务完成了,调用 countDown 方法
            doneSignal.countDown();
        } catch (InterruptedException ex) {
     
        } // return;
    }

    void doWork() {
      ...}
}

Java并发--AQS共享模式_第1张图片

如果始终只有一个线程调用 await 方法等待任务完成,那么 CountDownLatch 就会简单很多,所以之后的源码分析读者一定要在脑海中构建出这么一个场景:有 m 个线程是做任务的,有 n 个线程在某个栅栏上等待这 m 个线程做完任务,直到所有 m 个任务完成后,n 个线程同时通过栅栏。

源码分析

构造方法,需要传入一个不小于 0 的整数:

public CountDownLatch(int count) {
     
    if (count < 0) throw new IllegalArgumentException("count < 0");
    this.sync = new Sync(count);
}
// 老套路了,内部封装一个 Sync 类继承自 AQS
private static final class Sync extends AbstractQueuedSynchronizer {
     
    Sync(int count) {
     
        // 这样就 state == count 了
        setState(count);
    }
    ...
}

对于 CountDownLatch,我们仅仅需要关心两个方法,一个是 countDown() 方法,另一个是 await() 方法。

countDown() 方法每次调用都会将 state 减 1,直到 state 的值为 0;而 await()是一个阻塞方法,当 state 减为 0 的时候,await()方法才会返回。await() 可以被多个线程调用,读者这个时候脑子里要有个图:所有调用了 await() 方法的线程阻塞在 AQS 的阻塞队列中,等待条件满足(state == 0),将线程从队列中一个个唤醒过来。

分析案例

public class CountDownLatchDemo {
     

    public static void main(String[] args) {
     

        CountDownLatch latch = new CountDownLatch(2);

        Thread t1 = new Thread(new Runnable() {
     
            @Override
            public void run() {
     
                try {
     
                    Thread.sleep(5000);
                } catch (InterruptedException ignore) {
     
                }
                // 休息 5 秒后(模拟线程工作了 5 秒),调用 countDown()
                latch.countDown();
            }
        }, "t1");

        Thread t2 = new Thread(new Runnable() {
     
            @Override
            public void run() {
     
                try {
     
                    Thread.sleep(10000);
                } catch (InterruptedException ignore) {
     
                }
                // 休息 10 秒后(模拟线程工作了 10 秒),调用 countDown()
                latch.countDown();
            }
        }, "t2");

        t1.start();
        t2.start();

        Thread t3 = new Thread(new Runnable() {
     
            @Override
            public void run() {
     
                try {
     
                    // 阻塞,等待 state 减为 0
                    latch.await();
                    System.out.println("线程 t3 从 await 中返回了");
                } catch (InterruptedException e) {
     
                    System.out.println("线程 t3 await 被中断");
                    Thread.currentThread().interrupt();
                }
            }
        }, "t3");
        Thread t4 = new Thread(new Runnable() {
     
            @Override
            public void run() {
     
                try {
     
                    // 阻塞,等待 state 减为 0
                    latch.await();
                    System.out.println("线程 t4 从 await 中返回了");
                } catch (InterruptedException e) {
     
                    System.out.println("线程 t4 await 被中断");
                    Thread.currentThread().interrupt();
                }
            }
        }, "t4");

        t3.start();
        t4.start();
    }
}

线程 t3 从 await 中返回了
线程 t4 从 await 中返回了

await()

public void await() throws InterruptedException {
     
    sync.acquireSharedInterruptibly(1);
}
public final void acquireSharedInterruptibly(int arg)
        throws InterruptedException {
     
    if (Thread.interrupted())
        throw new InterruptedException();

    // t3 和 t4 调用 await 的时候,state 都大于 0(state 此时为 2)。
    // 也就是说,这个 if 返回 true,然后往里看
    if (tryAcquireShared(arg) < 0)
        doAcquireSharedInterruptibly(arg);
}
// 只有当 state == 0 的时候,这个方法才会返回 1
protected int tryAcquireShared(int acquires) {
     
    return (getState() == 0) ? 1 : -1;
}

从方法名我们就可以看出,这个方法是获取共享锁,并且此方法是可中断的(中断的时候抛出 InterruptedException 退出这个方法)

private void doAcquireSharedInterruptibly(int arg) throws InterruptedException {
     
    // 1. 入队
    final Node node = addWaiter(Node.SHARED);
    boolean failed = true;
    try {
     
        for (;;) {
     
            final Node p = node.predecessor();
            if (p == head) {
     
                // 同上,只要 state 不等于 0,那么这个方法返回 -1
                int r = tryAcquireShared(arg);
                if (r >= 0) {
     
                    setHeadAndPropagate(node, r);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
            }
            // 2
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())
                throw new InterruptedException();
        }
    } finally {
     
        if (failed)
            cancelAcquire(node);
    }
}

入队流程

唤醒流程

Java并发--AQS共享模式_第2张图片

countDown()

public void countDown() {
     
    sync.releaseShared(1);
}
public final boolean releaseShared(int arg) {
     
    // 只有当 state 减为 0 的时候,tryReleaseShared 才返回 true
    // 否则只是简单的 state = state - 1 那么 countDown() 方法就结束了
    //    将 state 减到 0 的那个操作才是最复杂的,继续往下吧
    if (tryReleaseShared(arg)) {
     
        // 唤醒 await 的线程
        doReleaseShared();
        return true;
    }
    return false;
}
// 这个方法很简单,用自旋的方法实现 state 减 1
protected boolean tryReleaseShared(int releases) {
     
    for (;;) {
     
        int c = getState();
        if (c == 0)
            return false;
        int nextc = c-1;
        if (compareAndSetState(c, nextc))
            return nextc == 0;
    }
}
// 调用这个方法的时候,state == 0
// 这个方法先不要看所有的代码,按照思路往下到我写注释的地方,我们先跑通一个流程,其他的之后还会仔细分析
private void doReleaseShared() {
     
    for (;;) {
     
        Node h = head;
        if (h != null && h != tail) {
     
            int ws = h.waitStatus;
            // t3 入队的时候,已经将头节点的 waitStatus 设置为 Node.SIGNAL(-1) 了
            if (ws == Node.SIGNAL) {
     
                // 将 head 的 waitStatue 设置为 0
                if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                    continue;            // loop to recheck cases
                // 就是这里,唤醒 head 的后继节点,也就是阻塞队列中的第一个节点
                // 在这里,也就是唤醒 t3
                unparkSuccessor(h);
            }
            else if (ws == 0 &&
                     !compareAndSetWaitStatus(h, 0, Node.PROPAGATE)) // todo
                continue;                // loop on failed CAS
        }
        if (h == head)                   // loop if head changed
            break;
    }
}

一旦 t3 被唤醒后,我们继续回到 await 的这段代码,parkAndCheckInterrupt 返回,我们先不考虑中断的情况:

private void doAcquireSharedInterruptibly(int arg)
    throws InterruptedException {
     
    final Node node = addWaiter(Node.SHARED);
    boolean failed = true;
    try {
     
        for (;;) {
     
            final Node p = node.predecessor();
            if (p == head) {
     
                int r = tryAcquireShared(arg);
                if (r >= 0) {
     
                    setHeadAndPropagate(node, r); // 2. 这里是下一步
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                // 1. 唤醒后这个方法返回
                parkAndCheckInterrupt())
                throw new InterruptedException();
        }
    } finally {
     
        if (failed)
            cancelAcquire(node);
    }
}

接下来,t3 会进到 setHeadAndPropagate(node, r) 这个方法,先把 head 给占了,然后唤醒队列中其他的线程:

private void setHeadAndPropagate(Node node, int propagate) {
     
    Node h = head; // Record old head for check below
    setHead(node);

    // 下面说的是,唤醒当前 node 之后的节点,即 t3 已经醒了,马上唤醒 t4
    // 类似的,如果 t4 后面还有 t5,那么 t4 醒了以后,马上将 t5 给唤醒了
    if (propagate > 0 || h == null || h.waitStatus < 0 || (h = head) == null || h.waitStatus < 0) {
     
        Node s = node.next;
        if (s == null || s.isShared())
            // 又是这个方法,只是现在的 head 已经不是原来的空节点了,是 t3 的节点了
            doReleaseShared();
    }
}

又回到这个方法了,那么接下来,我们好好分析 doReleaseShared 这个方法,我们根据流程,头节点 head 此时是 t3 节点了:

// 调用这个方法的时候,state == 0
private void doReleaseShared() {
     
    for (;;) {
     
        Node h = head;
        // 1. h == null: 说明阻塞队列为空
        // 2. h == tail: 说明头结点可能是刚刚初始化的头节点,
        //   或者是普通线程节点,但是此节点既然是头节点了,那么代表已经被唤醒了,阻塞队列没有其他节点了
        // 所以这两种情况不需要进行唤醒后继节点
        if (h != null && h != tail) {
     
            int ws = h.waitStatus;
            // t4 将头节点(此时是 t3)的 waitStatus 设置为 Node.SIGNAL(-1) 了
            if (ws == Node.SIGNAL) {
     
                // 这里 CAS 失败的场景请看下面的解读
                if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                    continue;            // loop to recheck cases
                // 就是这里,唤醒 head 的后继节点,也就是阻塞队列中的第一个节点
                // 在这里,也就是唤醒 t4
                unparkSuccessor(h);
            }
            else if (ws == 0 &&
                     // 这个 CAS 失败的场景是:执行到这里的时候,刚好有一个节点入队,入队会将这个 ws 设置为 -1
                     !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                continue;                // loop on failed CAS
        }
        // 如果到这里的时候,前面唤醒的线程已经占领了 head,那么再循环
        // 否则,就是 head 没变,那么退出循环,
        // 退出循环是不是意味着阻塞队列中的其他节点就不唤醒了?当然不是,唤醒的线程之后还是会调用这个方法的
        if (h == head)                   // loop if head changed
            break;
    }
}

我们分析下最后一个 if 语句,然后才能解释第一个 CAS 为什么可能会失败:

  1. h == head:说明头节点还没有被刚刚用 unparkSuccessor 唤醒的线程(这里可以理解为 t4)占有,此时 break 退出循环。
  2. h != head:头节点被刚刚唤醒的线程(这里可以理解为 t4)占有,那么这里重新进入下一轮循环,唤醒下一个节点(这里是 t4 )。我们知道,等到 t4 被唤醒后,其实是会主动唤醒 t5、t6、t7…,那为什么这里要进行下一个循环来唤醒 t5 呢?我觉得是出于吞吐量的考虑。

满足上面的 2 的场景,那么我们就能知道为什么上面的 CAS 操作 compareAndSetWaitStatus(h, Node.SIGNAL, 0) 会失败了?

因为当前进行 for 循环的线程到这里的时候,可能刚刚唤醒的线程 t4 也刚刚好到这里了,那么就有可能 CAS 失败了。

for 循环第一轮的时候会唤醒 t4,t4 醒后会将自己设置为头节点,如果在 t4 设置头节点后,for 循环才跑到 if (h == head),那么此时会返回 false,for 循环会进入下一轮。t4 唤醒后也会进入到这个方法里面,那么 for 循环第二轮和 t4 就有可能在这个 CAS 相遇,那么就只会有一个成功了。

CyclicBarrier

字面意思是“可重复使用的栅栏”或“周期性的栅栏”,总之不是用了一次就没用了的,CyclicBarrier 相比 CountDownLatch 来说,要简单很多,其源码没有什么高深的地方,它是 ReentrantLock 和 Condition 的组合使用。看如下示意图,CyclicBarrier 和 CountDownLatch 是不是很像,只是 CyclicBarrier 可以有不止一个栅栏,因为它的栅栏(Barrier)可以重复使用(Cyclic)。

Java并发--AQS共享模式_第3张图片

首先,CyclicBarrier 的源码实现和 CountDownLatch 大相径庭,CountDownLatch 基于 AQS 的共享模式的使用,而 CyclicBarrier 基于 Condition 来实现。

因为 CyclicBarrier 的源码相对来说简单许多,读者只要熟悉了前面关于 Condition 的分析,那么这里的源码是毫无压力的,就是几个特殊概念罢了。

先用一张图来描绘下 CyclicBarrier 里面的一些概念,和它的基本使用流程:

Java并发--AQS共享模式_第4张图片

源码分析

public class CyclicBarrier {
     
    // 我们说了,CyclicBarrier 是可以重复使用的,我们把每次从开始使用到穿过栅栏当做"一代",或者"一个周期"
    private static class Generation {
     
        boolean broken = false;
    }

    /** The lock for guarding barrier entry */
    private final ReentrantLock lock = new ReentrantLock();

    // CyclicBarrier 是基于 Condition 的
    // Condition 是“条件”的意思,CyclicBarrier 的等待线程通过 barrier 的“条件”是大家都到了栅栏上
    private final Condition trip = lock.newCondition();

    // 参与的线程数
    private final int parties;

    // 如果设置了这个,代表越过栅栏之前,要执行相应的操作
    private final Runnable barrierCommand;

    // 当前所处的“代”
    private Generation generation = new Generation();

    // 还没有到栅栏的线程数,这个值初始为 parties,然后递减
    // 还没有到栅栏的线程数 = parties - 已经到栅栏的数量
    private int count;

    public CyclicBarrier(int parties, Runnable barrierAction) {
     
        if (parties <= 0) throw new IllegalArgumentException();
        this.parties = parties;
        this.count = parties;
        this.barrierCommand = barrierAction;
    }

    public CyclicBarrier(int parties) {
     
        this(parties, null);
    }

开启新的一代:

// 开启新的一代,当最后一个线程到达栅栏上的时候,调用这个方法来唤醒其他线程,同时初始化“下一代”
private void nextGeneration() {
     
    // 首先,需要唤醒所有的在栅栏上等待的线程
    trip.signalAll();
    // 更新 count 的值
    count = parties;
    // 重新生成“新一代”
    generation = new Generation();
}

打破一个栅栏:

private void breakBarrier() {
     
    // 设置状态 broken 为 true
    generation.broken = true;
    // 重置 count 为初始值 parties
    count = parties;
    // 唤醒所有已经在等待的线程
    trip.signalAll();
}

最重要的等待通过栅栏方法 await 方法:

// 不带超时机制
public int await() throws InterruptedException, BrokenBarrierException {
     
    try {
     
        return dowait(false, 0L);
    } catch (TimeoutException toe) {
     
        throw new Error(toe); // cannot happen
    }
}
// 带超时机制,如果超时抛出 TimeoutException 异常
public int await(long timeout, TimeUnit unit)
    throws InterruptedException,
           BrokenBarrierException,
           TimeoutException {
     
    return dowait(true, unit.toNanos(timeout));
}

继续往里看:

private int dowait(boolean timed, long nanos)
        throws InterruptedException, BrokenBarrierException,
               TimeoutException {
     
    final ReentrantLock lock = this.lock;
    // 先要获取到锁,然后在 finally 中要记得释放锁
    // 如果记得 Condition 部分的话,我们知道 condition 的 await() 会释放锁,被 signal() 唤醒的时候需要重新获取锁
    lock.lock();
    try {
     
        final Generation g = generation;
        // 检查栅栏是否被打破,如果被打破,抛出 BrokenBarrierException 异常
        if (g.broken)
            throw new BrokenBarrierException();
        // 检查中断状态,如果中断了,抛出 InterruptedException 异常
        if (Thread.interrupted()) {
     
            breakBarrier();
            throw new InterruptedException();
        }
        // index 是这个 await 方法的返回值
        // 注意到这里,这个是从 count 递减后得到的值
        int index = --count;

        // 如果等于 0,说明所有的线程都到栅栏上了,准备通过
        if (index == 0) {
       // tripped
            boolean ranAction = false;
            try {
     
                // 如果在初始化的时候,指定了通过栅栏前需要执行的操作,在这里会得到执行
                final Runnable command = barrierCommand;
                if (command != null)
                    command.run();
                // 如果 ranAction 为 true,说明执行 command.run() 的时候,没有发生异常退出的情况
                ranAction = true;
                // 唤醒等待的线程,然后开启新的一代
                nextGeneration();
                return 0;
            } finally {
     
                if (!ranAction)
                    // 进到这里,说明执行指定操作的时候,发生了异常,那么需要打破栅栏
                    // 之前我们说了,打破栅栏意味着唤醒所有等待的线程,设置 broken 为 true,重置 count 为 parties
                    breakBarrier();
            }
        }

        // loop until tripped, broken, interrupted, or timed out
        // 如果是最后一个线程调用 await,那么上面就返回了
        // 下面的操作是给那些不是最后一个到达栅栏的线程执行的
        for (;;) {
     
            try {
     
                // 如果带有超时机制,调用带超时的 Condition 的 await 方法等待,直到最后一个线程调用 await
                if (!timed)
                    trip.await();
                else if (nanos > 0L)
                    nanos = trip.awaitNanos(nanos);
            } catch (InterruptedException ie) {
     
                // 如果到这里,说明等待的线程在 await(是 Condition 的 await)的时候被中断
                if (g == generation && ! g.broken) {
     
                    // 打破栅栏
                    breakBarrier();
                    // 打破栅栏后,重新抛出这个 InterruptedException 异常给外层调用的方法
                    throw ie;
                } else {
     
                    // 到这里,说明 g != generation, 说明新的一代已经产生,即最后一个线程 await 执行完成,
                    // 那么此时没有必要再抛出 InterruptedException 异常,记录下来这个中断信息即可
                    // 或者是栅栏已经被打破了,那么也不应该抛出 InterruptedException 异常,
                    // 而是之后抛出 BrokenBarrierException 异常
                    Thread.currentThread().interrupt();
                }
            }

              // 唤醒后,检查栅栏是否是“破的”
            if (g.broken)
                throw new BrokenBarrierException();

            // 这个 for 循环除了异常,就是要从这里退出了
            // 我们要清楚,最后一个线程在执行完指定任务(如果有的话),会调用 nextGeneration 来开启一个新的代
            // 然后释放掉锁,其他线程从 Condition 的 await 方法中得到锁并返回,然后到这里的时候,其实就会满足 g != generation 的
            // 那什么时候不满足呢?barrierCommand 执行过程中抛出了异常,那么会执行打破栅栏操作,
            // 设置 broken 为true,然后唤醒这些线程。这些线程会从上面的 if (g.broken) 这个分支抛 BrokenBarrierException 异常返回
            // 当然,还有最后一种可能,那就是 await 超时,此种情况不会从上面的 if 分支异常返回,也不会从这里返回,会执行后面的代码
            if (g != generation)
                return index;

            // 如果醒来发现超时了,打破栅栏,抛出异常
            if (timed && nanos <= 0L) {
     
                breakBarrier();
                throw new TimeoutException();
            }
        }
    } finally {
     
        lock.unlock();
    }
}

好了,我想我应该讲清楚了吧,我好像几乎没有漏掉任何一行代码吧?

下面开始收尾工作。

首先,我们看看怎么得到有多少个线程到了栅栏上,处于等待状态:

public int getNumberWaiting() {
     
    final ReentrantLock lock = this.lock;
    lock.lock();
    try {
     
        return parties - count;
    } finally {
     
        lock.unlock();
    }
}

判断一个栅栏是否被打破了,这个很简单,直接看 broken 的值即可:

public boolean isBroken() {
     
    final ReentrantLock lock = this.lock;
    lock.lock();
    try {
     
        return generation.broken;
    } finally {
     
        lock.unlock();
    }
}

前面我们在说 await 的时候也几乎说清楚了,什么时候栅栏会被打破,总结如下:

  1. 中断,我们说了,如果某个等待的线程发生了中断,那么会打破栅栏,同时抛出 InterruptedException 异常;
  2. 超时,打破栅栏,同时抛出 TimeoutException 异常;
  3. 指定执行的操作抛出了异常,这个我们前面也说过。

最后,我们来看看怎么重置一个栅栏:

public void reset() {
     
    final ReentrantLock lock = this.lock;
    lock.lock();
    try {
     
        breakBarrier();   // break the current generation
        nextGeneration(); // start a new generation
    } finally {
     
        lock.unlock();
    }
}

我们设想一下,如果初始化时,指定了线程 parties = 4,前面有 3 个线程调用了 await 等待,在第 4 个线程调用 await 之前,我们调用 reset 方法,那么会发生什么?

首先,打破栅栏,那意味着所有等待的线程(3个等待的线程)会唤醒,await 方法会通过抛出 BrokenBarrierException 异常返回。然后开启新的一代,重置了 count 和 generation,相当于一切归零了。

怎么样,CyclicBarrier 源码很简单吧。

Semaphore

有了 CountDownLatch 的基础后,分析 Semaphore 会简单很多。Semaphore 是什么呢?它类似一个资源池(读者可以类比线程池),每个线程需要调用 acquire() 方法获取资源,然后才能执行,执行完后,需要 release 资源,让给其他的线程用。

大概大家也可以猜到,Semaphore 其实也是 AQS 中共享锁的使用,因为每个线程共享一个池嘛。

套路解读:创建 Semaphore 实例的时候,需要一个参数 permits,这个基本上可以确定是设置给 AQS 的 state 的,然后每个线程调用 acquire 的时候,执行 state = state - 1,release 的时候执行 state = state + 1,当然,acquire 的时候,如果 state = 0,说明没有资源了,需要等待其他线程 release。

构造方法:

public Semaphore(int permits) {
     
    sync = new NonfairSync(permits);
}

public Semaphore(int permits, boolean fair) {
     
    sync = fair ? new FairSync(permits) : new NonfairSync(permits);
}

这里和 ReentrantLock 类似,用了公平策略和非公平策略。

看 acquire 方法:

public void acquire() throws InterruptedException {
     
    sync.acquireSharedInterruptibly(1);
}
public void acquireUninterruptibly() {
     
    sync.acquireShared(1);
}
public void acquire(int permits) throws InterruptedException {
     
    if (permits < 0) throw new IllegalArgumentException();
    sync.acquireSharedInterruptibly(permits);
}
public void acquireUninterruptibly(int permits) {
     
    if (permits < 0) throw new IllegalArgumentException();
    sync.acquireShared(permits);
}

这几个方法也是老套路了,大家基本都懂了吧,这边多了两个可以传参的 acquire 方法,不过大家也都懂的吧,如果我们需要一次获取超过一个的资源,会用得着这个的。

我们接下来看不抛出 InterruptedException 异常的 acquireUninterruptibly() 方法吧:

public void acquireUninterruptibly() {
     
    sync.acquireShared(1);
}
public final void acquireShared(int arg) {
     
    if (tryAcquireShared(arg) < 0)
        doAcquireShared(arg);
}

前面说了,Semaphore 分公平策略和非公平策略,我们对比一下两个 tryAcquireShared 方法:

// 公平策略:
protected int tryAcquireShared(int acquires) {
     
    for (;;) {
     
        // 区别就在于是不是会先判断是否有线程在排队,然后才进行 CAS 减操作
        if (hasQueuedPredecessors())
            return -1;
        int available = getState();
        int remaining = available - acquires;
        if (remaining < 0 ||
            compareAndSetState(available, remaining))
            return remaining;
    }
}
// 非公平策略:
protected int tryAcquireShared(int acquires) {
     
    return nonfairTryAcquireShared(acquires);
}
final int nonfairTryAcquireShared(int acquires) {
     
    for (;;) {
     
        int available = getState();
        int remaining = available - acquires;
        if (remaining < 0 ||
            compareAndSetState(available, remaining))
            return remaining;
    }
}

也是老套路了,所以从源码分析角度的话,我们其实不太需要关心是不是公平策略还是非公平策略,它们的区别往往就那么一两行。

我们再回到 acquireShared 方法,

public final void acquireShared(int arg) {
     
    if (tryAcquireShared(arg) < 0)
        doAcquireShared(arg);
}

由于 tryAcquireShared(arg) 返回小于 0 的时候,说明 state 已经小于 0 了(没资源了),此时 acquire 不能立马拿到资源,需要进入到阻塞队列等待,虽然贴了很多代码,不在乎多这点了:

private void doAcquireShared(int arg) {
     
    final Node node = addWaiter(Node.SHARED);
    boolean failed = true;
    try {
     
        boolean interrupted = false;
        for (;;) {
     
            final Node p = node.predecessor();
            if (p == head) {
     
                int r = tryAcquireShared(arg);
                if (r >= 0) {
     
                    setHeadAndPropagate(node, r);
                    p.next = null; // help GC
                    if (interrupted)
                        selfInterrupt();
                    failed = false;
                    return;
                }
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())
                interrupted = true;
        }
    } finally {
     
        if (failed)
            cancelAcquire(node);
    }
}

这个方法我就不介绍了,线程挂起后等待有资源被 release 出来。接下来,我们就要看 release 的方法了:

// 任务介绍,释放一个资源
public void release() {
     
    sync.releaseShared(1);
}
public final boolean releaseShared(int arg) {
     
    if (tryReleaseShared(arg)) {
     
        doReleaseShared();
        return true;
    }
    return false;
}

protected final boolean tryReleaseShared(int releases) {
     
    for (;;) {
     
        int current = getState();
        int next = current + releases;
        // 溢出,当然,我们一般也不会用这么大的数
        if (next < current) // overflow
            throw new Error("Maximum permit count exceeded");
        if (compareAndSetState(current, next))
            return true;
    }
}

tryReleaseShared 方法总是会返回 true,然后是 doReleaseShared,这个也是我们熟悉的方法了,我就贴下代码,不分析了,这个方法用于唤醒所有的等待线程:

private void doReleaseShared() {
     
    for (;;) {
     
        Node h = head;
        if (h != null && h != tail) {
     
            int ws = h.waitStatus;
            if (ws == Node.SIGNAL) {
     
                if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                    continue;            // loop to recheck cases
                unparkSuccessor(h);
            }
            else if (ws == 0 &&
                     !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                continue;                // loop on failed CAS
        }
        if (h == head)                   // loop if head changed
            break;
    }
}

Semphore 的源码确实很简单,基本上都是分析过的老代码的组合使用了。

参考

https://javadoop.com/post/AbstractQueuedSynchronizer-3

你可能感兴趣的:(java,java,并发编程)