OpenCV中的cvtColor函数包括了很多颜色格式之间的转换,用起来很方便,这里对cvtColor函数的code进行了提取,经测试,和OpenCV3.1结果完全一致。
实现代码cvtColor.hpp:
// fbc_cv is free software and uses the same licence as OpenCV
// Email: [email protected]
#ifndef FBC_CV_CVTCOLOR_HPP_
#define FBC_CV_CVTCOLOR_HPP_
// reference: include/opencv2/imgproc.hpp
#include "core/mat.hpp"
#include "core/saturate.hpp"
#include "imgproc.hpp"
#include "core/core.hpp"
namespace fbc {
#define FBC_DESCALE(x,n) (((x) + (1 << ((n)-1))) >> (n))
template static int CvtColorLoop_RGB2RGB(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx);
template static int CvtColorLoop_RGB2Gray(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx);
template static int CvtColorLoop_Gray2RGB(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst);
template static int CvtColorLoop_RGB2YCrCb(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, const float* coeffs_f, const int* coeffs_i);
template static int CvtColorLoop_YCrCb2RGB(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, const float* coeffs_f, const int* coeffs_i);
template static int CvtColorLoop_RGB2XYZ(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx);
template static int CvtColorLoop_XYZ2RGB(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx);
template static int CvtColorLoop_RGB2HSV(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, int hrange);
template static int CvtColorLoop_RGB2HLS(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, int hrange);
template static int CvtColorLoop_HSV2RGB(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, int hrange);
template static int CvtColorLoop_HLS2RGB(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, int hrange);
template static int CvtColorLoop_RGB2Lab(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, const float* coeffs, const float* whitept, bool srgb);
template static int CvtColorLoop_RGB2Luv(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, const float* coeffs, const float* whitept, bool srgb);
template static int CvtColorLoop_Lab2RGB(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, const float* coeffs, const float* whitept, bool srgb);
template static int CvtColorLoop_Luv2RGB(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, const float* coeffs, const float* whitept, bool srgb);
// Converts an image from one color space to another
// support type: uchar/ushort/float
template
int cvtColor(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int code)
{
FBC_Assert(src.cols > 0 && src.rows > 0 && dst.cols > 0 && dst.rows > 0);
FBC_Assert(src.cols == dst.cols);
FBC_Assert(src.data != NULL && dst.data != NULL);
FBC_Assert((sizeof(_Tp) == 1) || sizeof(_Tp) == 2 || sizeof(_Tp) == 4); // uchar || ushort || float
int scn = src.channels;
int dcn = dst.channels; // number of channels in the destination image
Size sz = src.size();
Size dz = dst.size();
int bidx;
switch (code) {
case CV_BGR2BGRA: case CV_RGB2BGRA: case CV_BGRA2BGR:
case CV_RGBA2BGR: case CV_RGB2BGR: case CV_BGRA2RGBA: {
FBC_Assert(scn == 3 || scn == 4);
dcn = code == CV_BGR2BGRA || code == CV_RGB2BGRA || code == CV_BGRA2RGBA ? 4 : 3;
FBC_Assert(dst.channels == dcn);
bidx = code == CV_BGR2BGRA || code == CV_BGRA2BGR ? 0 : 2;
CvtColorLoop_RGB2RGB(src, dst, bidx); // uchar/ushort/float
break;
}
case CV_BGR2GRAY: case CV_BGRA2GRAY: case CV_RGB2GRAY: case CV_RGBA2GRAY: {
FBC_Assert(scn == 3 || scn == 4);
FBC_Assert(dst.channels == 1);
bidx = code == CV_BGR2GRAY || code == CV_BGRA2GRAY ? 0 : 2;
CvtColorLoop_RGB2Gray(src, dst, bidx);
break;
}
case CV_GRAY2BGR: case CV_GRAY2BGRA: {
FBC_Assert(scn == 1 && (dcn == 3 || dcn == 4));
CvtColorLoop_Gray2RGB(src, dst);
break;
}
case CV_BGR2YCrCb: case CV_RGB2YCrCb:
case CV_BGR2YUV: case CV_RGB2YUV: {
FBC_Assert(scn == 3 || scn == 4);
bidx = code == CV_BGR2YCrCb || code == CV_BGR2YUV ? 0 : 2;
static const float yuv_f[] = { 0.114f, 0.587f, 0.299f, 0.492f, 0.877f };
static const int yuv_i[] = { B2Y, G2Y, R2Y, 8061, 14369 };
const float* coeffs_f = code == CV_BGR2YCrCb || code == CV_RGB2YCrCb ? 0 : yuv_f;
const int* coeffs_i = code == CV_BGR2YCrCb || code == CV_RGB2YCrCb ? 0 : yuv_i;
CvtColorLoop_RGB2YCrCb(src, dst, bidx, coeffs_f, coeffs_i);
break;
}
case CV_YCrCb2BGR: case CV_YCrCb2RGB:
case CV_YUV2BGR: case CV_YUV2RGB: {
FBC_Assert(scn == 3 && (dcn == 3 || dcn == 4));
bidx = code == CV_YCrCb2BGR || code == CV_YUV2BGR ? 0 : 2;
static const float yuv_f[] = { 2.032f, -0.395f, -0.581f, 1.140f };
static const int yuv_i[] = { 33292, -6472, -9519, 18678 };
const float* coeffs_f = code == CV_YCrCb2BGR || code == CV_YCrCb2RGB ? 0 : yuv_f;
const int* coeffs_i = code == CV_YCrCb2BGR || code == CV_YCrCb2RGB ? 0 : yuv_i;
CvtColorLoop_YCrCb2RGB(src, dst, bidx, coeffs_f, coeffs_i);
break;
}
case CV_BGR2XYZ: case CV_RGB2XYZ: {
FBC_Assert(scn == 3 || scn == 4);
bidx = code == CV_BGR2XYZ ? 0 : 2;
CvtColorLoop_RGB2XYZ(src, dst, bidx);
break;
}
case CV_XYZ2BGR: case CV_XYZ2RGB: {
FBC_Assert(scn == 3 && (dcn == 3 || dcn == 4));
bidx = code == CV_XYZ2BGR ? 0 : 2;
CvtColorLoop_XYZ2RGB(src, dst, bidx);
break;
}
case CV_BGR2HSV: case CV_RGB2HSV: case CV_BGR2HSV_FULL: case CV_RGB2HSV_FULL:
case CV_BGR2HLS: case CV_RGB2HLS: case CV_BGR2HLS_FULL: case CV_RGB2HLS_FULL: {
FBC_Assert(scn == 3 || scn == 4);
FBC_Assert(sizeof(_Tp) == 1 || sizeof(_Tp) == 4);
bidx = code == CV_BGR2HSV || code == CV_BGR2HLS ||
code == CV_BGR2HSV_FULL || code == CV_BGR2HLS_FULL ? 0 : 2;
int hrange = sizeof(_Tp) == 4 ? 360 : code == CV_BGR2HSV || code == CV_RGB2HSV ||
code == CV_BGR2HLS || code == CV_RGB2HLS ? 180 : 256;
if (code == CV_BGR2HSV || code == CV_RGB2HSV || code == CV_BGR2HSV_FULL || code == CV_RGB2HSV_FULL) {
CvtColorLoop_RGB2HSV(src, dst, bidx, hrange);
} else {
CvtColorLoop_RGB2HLS(src, dst, bidx, hrange);
}
break;
}
case CV_HSV2BGR: case CV_HSV2RGB: case CV_HSV2BGR_FULL: case CV_HSV2RGB_FULL:
case CV_HLS2BGR: case CV_HLS2RGB: case CV_HLS2BGR_FULL: case CV_HLS2RGB_FULL: {
FBC_Assert(scn == 3 && (dcn == 3 || dcn == 4));
FBC_Assert(sizeof(_Tp) == 1 || sizeof(_Tp) == 4);
bidx = code == CV_HSV2BGR || code == CV_HLS2BGR ||
code == CV_HSV2BGR_FULL || code == CV_HLS2BGR_FULL ? 0 : 2;
int hrange = sizeof(_Tp) == 4 ? 360 : code == CV_HSV2BGR || code == CV_HSV2RGB ||
code == CV_HLS2BGR || code == CV_HLS2RGB ? 180 : 255;
if (code == CV_HSV2BGR || code == CV_HSV2RGB || code == CV_HSV2BGR_FULL || code == CV_HSV2RGB_FULL) {
CvtColorLoop_HSV2RGB(src, dst, bidx, hrange);
} else {
CvtColorLoop_HLS2RGB(src, dst, bidx, hrange);
}
break;
}
case CV_BGR2Lab: case CV_RGB2Lab:
case CV_BGR2Luv: case CV_RGB2Luv: {
FBC_Assert(scn == 3 || scn == 4);
FBC_Assert(sizeof(_Tp) == 1 || sizeof(_Tp) == 4);
bidx = code == CV_BGR2Lab || code == CV_BGR2Luv ? 0 : 2;
bool srgb = code == CV_BGR2Lab || code == CV_RGB2Lab || code == CV_BGR2Luv || code == CV_RGB2Luv;
if (code == CV_BGR2Lab || code == CV_RGB2Lab) {
CvtColorLoop_RGB2Lab(src, dst, bidx, 0, 0, srgb);
} else {
CvtColorLoop_RGB2Luv(src, dst, bidx, 0, 0, srgb);
}
break;
}
case CV_Lab2BGR: case CV_Lab2RGB:
case CV_Luv2BGR: case CV_Luv2RGB: {
FBC_Assert(scn == 3 && (dcn == 3 || dcn == 4));
FBC_Assert(sizeof(_Tp) == 1 || sizeof(_Tp) == 4);
bidx = code == CV_Lab2BGR || code == CV_Luv2BGR ? 0 : 2;
bool srgb = code == CV_Lab2BGR || code == CV_Lab2RGB || code == CV_Luv2BGR || code == CV_Luv2RGB;
if (code == CV_Lab2BGR || code == CV_Lab2RGB) {
CvtColorLoop_Lab2RGB(src, dst, bidx, 0, 0, srgb);
} else {
CvtColorLoop_Luv2RGB(src, dst, bidx, 0, 0, srgb);
}
break;
}
case CV_YUV2BGR_NV21: case CV_YUV2RGB_NV21: case CV_YUV2BGR_NV12: case CV_YUV2RGB_NV12:
case CV_YUV2BGRA_NV21: case CV_YUV2RGBA_NV21: case CV_YUV2BGRA_NV12: case CV_YUV2RGBA_NV12: {
// http://www.fourcc.org/yuv.php#NV21 == yuv420sp -> a plane of 8 bit Y samples followed by an interleaved V/U plane containing 8 bit 2x2 subsampled chroma samples
// http://www.fourcc.org/yuv.php#NV12 -> a plane of 8 bit Y samples followed by an interleaved U/V plane containing 8 bit 2x2 subsampled colour difference samples
dcn = (code == CV_YUV420sp2BGRA || code == CV_YUV420sp2RGBA || code == CV_YUV2BGRA_NV12 || code == CV_YUV2RGBA_NV12) ? 4 : 3;
FBC_Assert(dcn == dst.channels);
const int bIdx = (code == CV_YUV2BGR_NV21 || code == CV_YUV2BGRA_NV21 || code == CV_YUV2BGR_NV12 || code == CV_YUV2BGRA_NV12) ? 0 : 2;
const int uIdx = (code == CV_YUV2BGR_NV21 || code == CV_YUV2BGRA_NV21 || code == CV_YUV2RGB_NV21 || code == CV_YUV2RGBA_NV21) ? 1 : 0;
FBC_Assert(dcn == 3 || dcn == 4);
FBC_Assert(sz.width % 2 == 0 && sz.height % 3 == 0);
FBC_Assert(sizeof(_Tp) == 1);
//Size dstSz(sz.width, sz.height * 2 / 3);
FBC_Assert((sz.width == dz.width) && (dz.height = sz.height * 2 / 3));
int srcstep = (int)src.step;
const uchar* y = src.ptr();
const uchar* uv = y + srcstep * dz.height;
switch (dcn * 100 + bIdx * 10 + uIdx) {
case 300: cvtYUV420sp2RGB<_Tp, chs2, 0, 0>(dst, srcstep, y, uv); break;
case 301: cvtYUV420sp2RGB<_Tp, chs2, 0, 1>(dst, srcstep, y, uv); break;
case 320: cvtYUV420sp2RGB<_Tp, chs2, 2, 0>(dst, srcstep, y, uv); break;
case 321: cvtYUV420sp2RGB<_Tp, chs2, 2, 1>(dst, srcstep, y, uv); break;
case 400: cvtYUV420sp2RGBA<_Tp, chs2, 0, 0>(dst, srcstep, y, uv); break;
case 401: cvtYUV420sp2RGBA<_Tp, chs2, 0, 1>(dst, srcstep, y, uv); break;
case 420: cvtYUV420sp2RGBA<_Tp, chs2, 2, 0>(dst, srcstep, y, uv); break;
case 421: cvtYUV420sp2RGBA<_Tp, chs2, 2, 1>(dst, srcstep, y, uv); break;
default: FBC_Error("Unknown/unsupported color conversion code"); break;
};
break;
}
case CV_YUV2BGR_YV12: case CV_YUV2RGB_YV12: case CV_YUV2BGRA_YV12: case CV_YUV2RGBA_YV12:
case CV_YUV2BGR_IYUV: case CV_YUV2RGB_IYUV: case CV_YUV2BGRA_IYUV: case CV_YUV2RGBA_IYUV: {
//http://www.fourcc.org/yuv.php#YV12 == yuv420p -> It comprises an NxM Y plane followed by (N/2)x(M/2) V and U planes.
//http://www.fourcc.org/yuv.php#IYUV == I420 -> It comprises an NxN Y plane followed by (N/2)x(N/2) U and V planes
dcn = (code == CV_YUV2BGRA_YV12 || code == CV_YUV2RGBA_YV12 || code == CV_YUV2RGBA_IYUV || code == CV_YUV2BGRA_IYUV) ? 4 : 3;
FBC_Assert(dcn == dst.channels);
const int bIdx = (code == CV_YUV2BGR_YV12 || code == CV_YUV2BGRA_YV12 || code == CV_YUV2BGR_IYUV || code == CV_YUV2BGRA_IYUV) ? 0 : 2;
const int uIdx = (code == CV_YUV2BGR_YV12 || code == CV_YUV2RGB_YV12 || code == CV_YUV2BGRA_YV12 || code == CV_YUV2RGBA_YV12) ? 1 : 0;
FBC_Assert(dcn == 3 || dcn == 4);
FBC_Assert(sz.width % 2 == 0 && sz.height % 3 == 0);
FBC_Assert(sizeof(_Tp) == 1);
//Size dstSz(sz.width, sz.height * 2 / 3);
FBC_Assert((sz.width == dz.width) && (dz.height = sz.height * 2 / 3));
int srcstep = (int)src.step;
const uchar* y = src.ptr();
const uchar* u = y + srcstep * dz.height;
const uchar* v = y + srcstep * (dz.height + dz.height / 4) + (dz.width / 2) * ((dz.height % 4) / 2);
int ustepIdx = 0;
int vstepIdx = dz.height % 4 == 2 ? 1 : 0;
if (uIdx == 1) { std::swap(u, v), std::swap(ustepIdx, vstepIdx); }
switch (dcn * 10 + bIdx) {
case 30: cvtYUV420p2RGB<_Tp, chs2, 0>(dst, srcstep, y, u, v, ustepIdx, vstepIdx); break;
case 32: cvtYUV420p2RGB<_Tp, chs2, 2>(dst, srcstep, y, u, v, ustepIdx, vstepIdx); break;
case 40: cvtYUV420p2RGBA<_Tp, chs2, 0>(dst, srcstep, y, u, v, ustepIdx, vstepIdx); break;
case 42: cvtYUV420p2RGBA<_Tp, chs2, 2>(dst, srcstep, y, u, v, ustepIdx, vstepIdx); break;
default: FBC_Error("Unknown/unsupported color conversion code"); break;
};
break;
}
case CV_YUV2GRAY_420: {
FBC_Assert(dcn == 1 && scn == 1);
FBC_Assert(sz.width % 2 == 0 && sz.height % 3 == 0);
FBC_Assert(sizeof(_Tp) == 1);
//Size dstSz(sz.width, sz.height * 2 / 3);
FBC_Assert((sz.width == dz.width) && (dz.height = sz.height * 2 / 3));
//src.copyTo(dst, Rect(0, 0, sz.width, dz.height));
memcpy(dst.data, src.data, dz.area());
break;
}
case CV_RGB2YUV_YV12: case CV_BGR2YUV_YV12: case CV_RGBA2YUV_YV12: case CV_BGRA2YUV_YV12:
case CV_RGB2YUV_IYUV: case CV_BGR2YUV_IYUV: case CV_RGBA2YUV_IYUV: case CV_BGRA2YUV_IYUV: {
const int bIdx = (code == CV_BGR2YUV_IYUV || code == CV_BGRA2YUV_IYUV || code == CV_BGR2YUV_YV12 || code == CV_BGRA2YUV_YV12) ? 0 : 2;
const int uIdx = (code == CV_BGR2YUV_IYUV || code == CV_BGRA2YUV_IYUV || code == CV_RGB2YUV_IYUV || code == CV_RGBA2YUV_IYUV) ? 1 : 2;
FBC_Assert(scn == 3 || scn == 4);
FBC_Assert(sizeof(_Tp) == 1);
FBC_Assert(dcn == 1);
FBC_Assert(sz.width % 2 == 0 && sz.height % 2 == 0);
//Size dstSz(sz.width, sz.height / 2 * 3);
FBC_Assert((dz.width == sz.width) && (sz.height / 2 * 3 == dz.height));
switch (bIdx + uIdx * 10) {
case 10: cvtRGBtoYUV420p<_Tp, chs1, chs2, 0, 1>(src, dst); break;
case 12: cvtRGBtoYUV420p<_Tp, chs1, chs2, 2, 1>(src, dst); break;
case 20: cvtRGBtoYUV420p<_Tp, chs1, chs2, 0, 2>(src, dst); break;
case 22: cvtRGBtoYUV420p<_Tp, chs1, chs2, 2, 2>(src, dst); break;
default: FBC_Error("Unknown/unsupported color conversion code"); break;
};
break;
}
default:
FBC_Error("Unknown/unsupported color conversion code");
}
return 0;
}
// computes cubic spline coefficients for a function: (xi=i, yi=f[i]), i=0..n
template static void splineBuild(const _Tp* f, int n, _Tp* tab)
{
_Tp cn = 0;
int i;
tab[0] = tab[1] = (_Tp)0;
for (i = 1; i < n - 1; i++) {
_Tp t = 3 * (f[i + 1] - 2 * f[i] + f[i - 1]);
_Tp l = 1 / (4 - tab[(i - 1) * 4]);
tab[i * 4] = l; tab[i * 4 + 1] = (t - tab[(i - 1) * 4 + 1])*l;
}
for (i = n - 1; i >= 0; i--) {
_Tp c = tab[i * 4 + 1] - tab[i * 4] * cn;
_Tp b = f[i + 1] - f[i] - (cn + c * 2)*(_Tp)0.3333333333333333;
_Tp d = (cn - c)*(_Tp)0.3333333333333333;
tab[i * 4] = f[i]; tab[i * 4 + 1] = b;
tab[i * 4 + 2] = c; tab[i * 4 + 3] = d;
cn = c;
}
}
// interpolates value of a function at x, 0 <= x <= n using a cubic spline.
template static inline _Tp splineInterpolate(_Tp x, const _Tp* tab, int n)
{
// don't touch this function without urgent need - some versions of gcc fail to inline it correctly
int ix = std::min(std::max(int(x), 0), n - 1);
x -= ix;
tab += ix * 4;
return ((tab[3] * x + tab[2])*x + tab[1])*x + tab[0];
}
template struct ColorChannel
{
typedef float worktype_f;
static _Tp max() { return std::numeric_limits<_Tp>::max(); }
static _Tp half() { return (_Tp)(max() / 2 + 1); }
};
template<> struct ColorChannel
{
typedef float worktype_f;
static float max() { return 1.f; }
static float half() { return 0.5f; }
};
#undef R2Y
#undef G2Y
#undef B2Y
enum
{
yuv_shift = 14,
xyz_shift = 12,
R2Y = 4899,
G2Y = 9617,
B2Y = 1868,
BLOCK_SIZE = 256
};
template struct RGB2Gray
{
typedef _Tp channel_type;
RGB2Gray(int _srccn, int blueIdx, const float* _coeffs) : srccn(_srccn)
{
static const float coeffs0[] = { 0.299f, 0.587f, 0.114f };
memcpy(coeffs, _coeffs ? _coeffs : coeffs0, 3 * sizeof(coeffs[0]));
if (blueIdx == 0)
std::swap(coeffs[0], coeffs[2]);
}
void operator()(const _Tp* src, _Tp* dst, int n) const
{
int scn = srccn;
float cb = coeffs[0], cg = coeffs[1], cr = coeffs[2];
for (int i = 0; i < n; i++, src += scn)
dst[i] = saturate_cast<_Tp>(src[0] * cb + src[1] * cg + src[2] * cr);
}
int srccn;
float coeffs[3];
};
template<> struct RGB2Gray
{
typedef uchar channel_type;
RGB2Gray(int _srccn, int blueIdx, const int* coeffs) : srccn(_srccn)
{
const int coeffs0[] = { R2Y, G2Y, B2Y };
if (!coeffs) coeffs = coeffs0;
int b = 0, g = 0, r = (1 << (yuv_shift - 1));
int db = coeffs[blueIdx ^ 2], dg = coeffs[1], dr = coeffs[blueIdx];
for (int i = 0; i < 256; i++, b += db, g += dg, r += dr) {
tab[i] = b;
tab[i + 256] = g;
tab[i + 512] = r;
}
}
void operator()(const uchar* src, uchar* dst, int n) const
{
int scn = srccn;
const int* _tab = tab;
for (int i = 0; i < n; i++, src += scn)
dst[i] = (uchar)((_tab[src[0]] + _tab[src[1] + 256] + _tab[src[2] + 512]) >> yuv_shift);
}
int srccn;
int tab[256 * 3];
};
template<> struct RGB2Gray
{
typedef ushort channel_type;
RGB2Gray(int _srccn, int blueIdx, const int* _coeffs) : srccn(_srccn)
{
static const int coeffs0[] = { R2Y, G2Y, B2Y };
memcpy(coeffs, _coeffs ? _coeffs : coeffs0, 3 * sizeof(coeffs[0]));
if (blueIdx == 0)
std::swap(coeffs[0], coeffs[2]);
}
void operator()(const ushort* src, ushort* dst, int n) const
{
int scn = srccn, cb = coeffs[0], cg = coeffs[1], cr = coeffs[2];
for (int i = 0; i < n; i++, src += scn)
dst[i] = (ushort)FBC_DESCALE((unsigned)(src[0] * cb + src[1] * cg + src[2] * cr), yuv_shift);
}
int srccn;
int coeffs[3];
};
template
struct Gray2RGB
{
typedef _Tp channel_type;
Gray2RGB(int _dstcn) : dstcn(_dstcn) {}
void operator()(const _Tp* src, _Tp* dst, int n) const
{
if (dstcn == 3) {
for (int i = 0; i < n; i++, dst += 3)
dst[0] = dst[1] = dst[2] = src[i];
} else {
_Tp alpha = ColorChannel<_Tp>::max();
for (int i = 0; i < n; i++, dst += 4) {
dst[0] = dst[1] = dst[2] = src[i];
dst[3] = alpha;
}
}
}
int dstcn;
};
template struct RGB2YCrCb_f
{
typedef _Tp channel_type;
RGB2YCrCb_f(int _srccn, int _blueIdx, const float* _coeffs) : srccn(_srccn), blueIdx(_blueIdx)
{
static const float coeffs0[] = { 0.299f, 0.587f, 0.114f, 0.713f, 0.564f };
memcpy(coeffs, _coeffs ? _coeffs : coeffs0, 5 * sizeof(coeffs[0]));
if (blueIdx == 0) std::swap(coeffs[0], coeffs[2]);
}
void operator()(const _Tp* src, _Tp* dst, int n) const
{
int scn = srccn, bidx = blueIdx;
const _Tp delta = ColorChannel<_Tp>::half();
float C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2], C3 = coeffs[3], C4 = coeffs[4];
n *= 3;
for (int i = 0; i < n; i += 3, src += scn) {
_Tp Y = saturate_cast<_Tp>(src[0] * C0 + src[1] * C1 + src[2] * C2);
_Tp Cr = saturate_cast<_Tp>((src[bidx ^ 2] - Y)*C3 + delta);
_Tp Cb = saturate_cast<_Tp>((src[bidx] - Y)*C4 + delta);
dst[i] = Y; dst[i + 1] = Cr; dst[i + 2] = Cb;
}
}
int srccn, blueIdx;
float coeffs[5];
};
template struct RGB2YCrCb_i
{
typedef _Tp channel_type;
RGB2YCrCb_i(int _srccn, int _blueIdx, const int* _coeffs) : srccn(_srccn), blueIdx(_blueIdx)
{
static const int coeffs0[] = { R2Y, G2Y, B2Y, 11682, 9241 };
memcpy(coeffs, _coeffs ? _coeffs : coeffs0, 5 * sizeof(coeffs[0]));
if (blueIdx == 0) std::swap(coeffs[0], coeffs[2]);
}
void operator()(const _Tp* src, _Tp* dst, int n) const
{
int scn = srccn, bidx = blueIdx;
int C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2], C3 = coeffs[3], C4 = coeffs[4];
int delta = ColorChannel<_Tp>::half()*(1 << yuv_shift);
n *= 3;
for (int i = 0; i < n; i += 3, src += scn) {
int Y = FBC_DESCALE(src[0] * C0 + src[1] * C1 + src[2] * C2, yuv_shift);
int Cr = FBC_DESCALE((src[bidx ^ 2] - Y)*C3 + delta, yuv_shift);
int Cb = FBC_DESCALE((src[bidx] - Y)*C4 + delta, yuv_shift);
dst[i] = saturate_cast<_Tp>(Y);
dst[i + 1] = saturate_cast<_Tp>(Cr);
dst[i + 2] = saturate_cast<_Tp>(Cb);
}
}
int srccn, blueIdx;
int coeffs[5];
};
template struct YCrCb2RGB_f
{
typedef _Tp channel_type;
YCrCb2RGB_f(int _dstcn, int _blueIdx, const float* _coeffs)
: dstcn(_dstcn), blueIdx(_blueIdx)
{
static const float coeffs0[] = { 1.403f, -0.714f, -0.344f, 1.773f };
memcpy(coeffs, _coeffs ? _coeffs : coeffs0, 4 * sizeof(coeffs[0]));
}
void operator()(const _Tp* src, _Tp* dst, int n) const
{
int dcn = dstcn, bidx = blueIdx;
const _Tp delta = ColorChannel<_Tp>::half(), alpha = ColorChannel<_Tp>::max();
float C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2], C3 = coeffs[3];
n *= 3;
for (int i = 0; i < n; i += 3, dst += dcn) {
_Tp Y = src[i];
_Tp Cr = src[i + 1];
_Tp Cb = src[i + 2];
_Tp b = saturate_cast<_Tp>(Y + (Cb - delta)*C3);
_Tp g = saturate_cast<_Tp>(Y + (Cb - delta)*C2 + (Cr - delta)*C1);
_Tp r = saturate_cast<_Tp>(Y + (Cr - delta)*C0);
dst[bidx] = b; dst[1] = g; dst[bidx ^ 2] = r;
if (dcn == 4)
dst[3] = alpha;
}
}
int dstcn, blueIdx;
float coeffs[4];
};
template struct YCrCb2RGB_i
{
typedef _Tp channel_type;
YCrCb2RGB_i(int _dstcn, int _blueIdx, const int* _coeffs)
: dstcn(_dstcn), blueIdx(_blueIdx)
{
static const int coeffs0[] = { 22987, -11698, -5636, 29049 };
memcpy(coeffs, _coeffs ? _coeffs : coeffs0, 4 * sizeof(coeffs[0]));
}
void operator()(const _Tp* src, _Tp* dst, int n) const
{
int dcn = dstcn, bidx = blueIdx;
const _Tp delta = ColorChannel<_Tp>::half(), alpha = ColorChannel<_Tp>::max();
int C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2], C3 = coeffs[3];
n *= 3;
for (int i = 0; i < n; i += 3, dst += dcn) {
_Tp Y = src[i];
_Tp Cr = src[i + 1];
_Tp Cb = src[i + 2];
int b = Y + FBC_DESCALE((Cb - delta)*C3, yuv_shift);
int g = Y + FBC_DESCALE((Cb - delta)*C2 + (Cr - delta)*C1, yuv_shift);
int r = Y + FBC_DESCALE((Cr - delta)*C0, yuv_shift);
dst[bidx] = saturate_cast<_Tp>(b);
dst[1] = saturate_cast<_Tp>(g);
dst[bidx ^ 2] = saturate_cast<_Tp>(r);
if (dcn == 4)
dst[3] = alpha;
}
}
int dstcn, blueIdx;
int coeffs[4];
};
static const float sRGB2XYZ_D65[] =
{
0.412453f, 0.357580f, 0.180423f,
0.212671f, 0.715160f, 0.072169f,
0.019334f, 0.119193f, 0.950227f
};
static const float XYZ2sRGB_D65[] =
{
3.240479f, -1.53715f, -0.498535f,
-0.969256f, 1.875991f, 0.041556f,
0.055648f, -0.204043f, 1.057311f
};
template struct RGB2XYZ_f
{
typedef _Tp channel_type;
RGB2XYZ_f(int _srccn, int blueIdx, const float* _coeffs) : srccn(_srccn)
{
memcpy(coeffs, _coeffs ? _coeffs : sRGB2XYZ_D65, 9 * sizeof(coeffs[0]));
if (blueIdx == 0) {
std::swap(coeffs[0], coeffs[2]);
std::swap(coeffs[3], coeffs[5]);
std::swap(coeffs[6], coeffs[8]);
}
}
void operator()(const _Tp* src, _Tp* dst, int n) const
{
int scn = srccn;
float C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
n *= 3;
for (int i = 0; i < n; i += 3, src += scn) {
_Tp X = saturate_cast<_Tp>(src[0] * C0 + src[1] * C1 + src[2] * C2);
_Tp Y = saturate_cast<_Tp>(src[0] * C3 + src[1] * C4 + src[2] * C5);
_Tp Z = saturate_cast<_Tp>(src[0] * C6 + src[1] * C7 + src[2] * C8);
dst[i] = X; dst[i + 1] = Y; dst[i + 2] = Z;
}
}
int srccn;
float coeffs[9];
};
template struct RGB2XYZ_i
{
typedef _Tp channel_type;
RGB2XYZ_i(int _srccn, int blueIdx, const float* _coeffs) : srccn(_srccn)
{
static const int coeffs0[] = {
1689, 1465, 739,
871, 2929, 296,
79, 488, 3892
};
for (int i = 0; i < 9; i++)
coeffs[i] = _coeffs ? cvRound(_coeffs[i] * (1 << xyz_shift)) : coeffs0[i];
if (blueIdx == 0) {
std::swap(coeffs[0], coeffs[2]);
std::swap(coeffs[3], coeffs[5]);
std::swap(coeffs[6], coeffs[8]);
}
}
void operator()(const _Tp* src, _Tp* dst, int n) const
{
int scn = srccn;
int C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
n *= 3;
for (int i = 0; i < n; i += 3, src += scn) {
int X = FBC_DESCALE(src[0] * C0 + src[1] * C1 + src[2] * C2, xyz_shift);
int Y = FBC_DESCALE(src[0] * C3 + src[1] * C4 + src[2] * C5, xyz_shift);
int Z = FBC_DESCALE(src[0] * C6 + src[1] * C7 + src[2] * C8, xyz_shift);
dst[i] = saturate_cast<_Tp>(X); dst[i + 1] = saturate_cast<_Tp>(Y);
dst[i + 2] = saturate_cast<_Tp>(Z);
}
}
int srccn;
int coeffs[9];
};
template struct XYZ2RGB_f
{
typedef _Tp channel_type;
XYZ2RGB_f(int _dstcn, int _blueIdx, const float* _coeffs) : dstcn(_dstcn), blueIdx(_blueIdx)
{
memcpy(coeffs, _coeffs ? _coeffs : XYZ2sRGB_D65, 9 * sizeof(coeffs[0]));
if (blueIdx == 0) {
std::swap(coeffs[0], coeffs[6]);
std::swap(coeffs[1], coeffs[7]);
std::swap(coeffs[2], coeffs[8]);
}
}
void operator()(const _Tp* src, _Tp* dst, int n) const
{
int dcn = dstcn;
_Tp alpha = ColorChannel<_Tp>::max();
float C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
n *= 3;
for (int i = 0; i < n; i += 3, dst += dcn) {
_Tp B = saturate_cast<_Tp>(src[i] * C0 + src[i + 1] * C1 + src[i + 2] * C2);
_Tp G = saturate_cast<_Tp>(src[i] * C3 + src[i + 1] * C4 + src[i + 2] * C5);
_Tp R = saturate_cast<_Tp>(src[i] * C6 + src[i + 1] * C7 + src[i + 2] * C8);
dst[0] = B; dst[1] = G; dst[2] = R;
if (dcn == 4)
dst[3] = alpha;
}
}
int dstcn, blueIdx;
float coeffs[9];
};
template struct XYZ2RGB_i
{
typedef _Tp channel_type;
XYZ2RGB_i(int _dstcn, int _blueIdx, const int* _coeffs)
: dstcn(_dstcn), blueIdx(_blueIdx)
{
static const int coeffs0[] = {
13273, -6296, -2042,
-3970, 7684, 170,
228, -836, 4331
};
for (int i = 0; i < 9; i++)
coeffs[i] = _coeffs ? cvRound(_coeffs[i] * (1 << xyz_shift)) : coeffs0[i];
if (blueIdx == 0) {
std::swap(coeffs[0], coeffs[6]);
std::swap(coeffs[1], coeffs[7]);
std::swap(coeffs[2], coeffs[8]);
}
}
void operator()(const _Tp* src, _Tp* dst, int n) const
{
int dcn = dstcn;
_Tp alpha = ColorChannel<_Tp>::max();
int C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
n *= 3;
for (int i = 0; i < n; i += 3, dst += dcn) {
int B = FBC_DESCALE(src[i] * C0 + src[i + 1] * C1 + src[i + 2] * C2, xyz_shift);
int G = FBC_DESCALE(src[i] * C3 + src[i + 1] * C4 + src[i + 2] * C5, xyz_shift);
int R = FBC_DESCALE(src[i] * C6 + src[i + 1] * C7 + src[i + 2] * C8, xyz_shift);
dst[0] = saturate_cast<_Tp>(B); dst[1] = saturate_cast<_Tp>(G);
dst[2] = saturate_cast<_Tp>(R);
if (dcn == 4)
dst[3] = alpha;
}
}
int dstcn, blueIdx;
int coeffs[9];
};
struct RGB2HSV_b
{
typedef uchar channel_type;
RGB2HSV_b(int _srccn, int _blueIdx, int _hrange) : srccn(_srccn), blueIdx(_blueIdx), hrange(_hrange)
{
FBC_Assert(hrange == 180 || hrange == 256);
}
void operator()(const uchar* src, uchar* dst, int n) const
{
int i, bidx = blueIdx, scn = srccn;
const int hsv_shift = 12;
static int sdiv_table[256];
static int hdiv_table180[256];
static int hdiv_table256[256];
static volatile bool initialized = false;
int hr = hrange;
const int* hdiv_table = hr == 180 ? hdiv_table180 : hdiv_table256;
n *= 3;
if (!initialized) {
sdiv_table[0] = hdiv_table180[0] = hdiv_table256[0] = 0;
for (i = 1; i < 256; i++) {
sdiv_table[i] = saturate_cast((255 << hsv_shift) / (1.*i));
hdiv_table180[i] = saturate_cast((180 << hsv_shift) / (6.*i));
hdiv_table256[i] = saturate_cast((256 << hsv_shift) / (6.*i));
}
initialized = true;
}
for (i = 0; i < n; i += 3, src += scn) {
int b = src[bidx], g = src[1], r = src[bidx ^ 2];
int h, s, v = b;
int vmin = b, diff;
int vr, vg;
FBC_CALC_MAX_8U(v, g);
FBC_CALC_MAX_8U(v, r);
FBC_CALC_MIN_8U(vmin, g);
FBC_CALC_MIN_8U(vmin, r);
diff = v - vmin;
vr = v == r ? -1 : 0;
vg = v == g ? -1 : 0;
s = (diff * sdiv_table[v] + (1 << (hsv_shift - 1))) >> hsv_shift;
h = (vr & (g - b)) + (~vr & ((vg & (b - r + 2 * diff)) + ((~vg) & (r - g + 4 * diff))));
h = (h * hdiv_table[diff] + (1 << (hsv_shift - 1))) >> hsv_shift;
h += h < 0 ? hr : 0;
dst[i] = saturate_cast(h);
dst[i + 1] = (uchar)s;
dst[i + 2] = (uchar)v;
}
}
int srccn, blueIdx, hrange;
};
struct RGB2HSV_f
{
typedef float channel_type;
RGB2HSV_f(int _srccn, int _blueIdx, float _hrange) : srccn(_srccn), blueIdx(_blueIdx), hrange(_hrange) {}
void operator()(const float* src, float* dst, int n) const
{
int i, bidx = blueIdx, scn = srccn;
float hscale = hrange*(1.f / 360.f);
n *= 3;
for (i = 0; i < n; i += 3, src += scn) {
float b = src[bidx], g = src[1], r = src[bidx ^ 2];
float h, s, v;
float vmin, diff;
v = vmin = r;
if (v < g) v = g;
if (v < b) v = b;
if (vmin > g) vmin = g;
if (vmin > b) vmin = b;
diff = v - vmin;
s = diff / (float)(fabs(v) + FLT_EPSILON);
diff = (float)(60. / (diff + FLT_EPSILON));
if (v == r)
h = (g - b)*diff;
else if (v == g)
h = (b - r)*diff + 120.f;
else
h = (r - g)*diff + 240.f;
if (h < 0) h += 360.f;
dst[i] = h*hscale;
dst[i + 1] = s;
dst[i + 2] = v;
}
}
int srccn, blueIdx;
float hrange;
};
struct RGB2HLS_f
{
typedef float channel_type;
RGB2HLS_f(int _srccn, int _blueIdx, float _hrange) : srccn(_srccn), blueIdx(_blueIdx), hrange(_hrange) {}
void operator()(const float* src, float* dst, int n) const
{
int i, bidx = blueIdx, scn = srccn;
float hscale = hrange*(1.f / 360.f);
n *= 3;
for (i = 0; i < n; i += 3, src += scn) {
float b = src[bidx], g = src[1], r = src[bidx ^ 2];
float h = 0.f, s = 0.f, l;
float vmin, vmax, diff;
vmax = vmin = r;
if (vmax < g) vmax = g;
if (vmax < b) vmax = b;
if (vmin > g) vmin = g;
if (vmin > b) vmin = b;
diff = vmax - vmin;
l = (vmax + vmin)*0.5f;
if (diff > FLT_EPSILON) {
s = l < 0.5f ? diff / (vmax + vmin) : diff / (2 - vmax - vmin);
diff = 60.f / diff;
if (vmax == r)
h = (g - b)*diff;
else if (vmax == g)
h = (b - r)*diff + 120.f;
else
h = (r - g)*diff + 240.f;
if (h < 0.f) h += 360.f;
}
dst[i] = h*hscale;
dst[i + 1] = l;
dst[i + 2] = s;
}
}
int srccn, blueIdx;
float hrange;
};
struct RGB2HLS_b
{
typedef uchar channel_type;
RGB2HLS_b(int _srccn, int _blueIdx, int _hrange) : srccn(_srccn), cvt(3, _blueIdx, (float)_hrange) { }
void operator()(const uchar* src, uchar* dst, int n) const
{
int i, j, scn = srccn;
float FBC_DECL_ALIGNED(16) buf[3 * BLOCK_SIZE];
for (i = 0; i < n; i += BLOCK_SIZE, dst += BLOCK_SIZE * 3) {
int dn = std::min(n - i, (int)BLOCK_SIZE);
j = 0;
for (; j < dn * 3; j += 3, src += scn) {
buf[j] = src[0] * (1.f / 255.f);
buf[j + 1] = src[1] * (1.f / 255.f);
buf[j + 2] = src[2] * (1.f / 255.f);
}
cvt(buf, buf, dn);
j = 0;
for (; j < dn * 3; j += 3) {
dst[j] = saturate_cast(buf[j]);
dst[j + 1] = saturate_cast(buf[j + 1] * 255.f);
dst[j + 2] = saturate_cast(buf[j + 2] * 255.f);
}
}
}
int srccn;
RGB2HLS_f cvt;
};
struct HSV2RGB_f
{
typedef float channel_type;
HSV2RGB_f(int _dstcn, int _blueIdx, float _hrange)
: dstcn(_dstcn), blueIdx(_blueIdx), hscale(6.f / _hrange) {}
void operator()(const float* src, float* dst, int n) const
{
int i, bidx = blueIdx, dcn = dstcn;
float _hscale = hscale;
float alpha = ColorChannel::max();
n *= 3;
for (i = 0; i < n; i += 3, dst += dcn) {
float h = src[i], s = src[i + 1], v = src[i + 2];
float b, g, r;
if (s == 0)
b = g = r = v;
else {
static const int sector_data[][3] =
{ { 1, 3, 0 }, { 1, 0, 2 }, { 3, 0, 1 }, { 0, 2, 1 }, { 0, 1, 3 }, { 2, 1, 0 } };
float tab[4];
int sector;
h *= _hscale;
if (h < 0)
do h += 6; while (h < 0);
else if (h >= 6)
do h -= 6; while (h >= 6);
sector = fbcFloor(h);
h -= sector;
if ((unsigned)sector >= 6u) {
sector = 0;
h = 0.f;
}
tab[0] = v;
tab[1] = v*(1.f - s);
tab[2] = v*(1.f - s*h);
tab[3] = v*(1.f - s*(1.f - h));
b = tab[sector_data[sector][0]];
g = tab[sector_data[sector][1]];
r = tab[sector_data[sector][2]];
}
dst[bidx] = b;
dst[1] = g;
dst[bidx ^ 2] = r;
if (dcn == 4)
dst[3] = alpha;
}
}
int dstcn, blueIdx;
float hscale;
};
struct HSV2RGB_b
{
typedef uchar channel_type;
HSV2RGB_b(int _dstcn, int _blueIdx, int _hrange) : dstcn(_dstcn), cvt(3, _blueIdx, (float)_hrange) {}
void operator()(const uchar* src, uchar* dst, int n) const
{
int i, j, dcn = dstcn;
uchar alpha = ColorChannel::max();
float FBC_DECL_ALIGNED(16) buf[3 * BLOCK_SIZE];
for (i = 0; i < n; i += BLOCK_SIZE, src += BLOCK_SIZE * 3) {
int dn = std::min(n - i, (int)BLOCK_SIZE);
j = 0;
for (; j < dn * 3; j += 3) {
buf[j] = src[j];
buf[j + 1] = src[j + 1] * (1.f / 255.f);
buf[j + 2] = src[j + 2] * (1.f / 255.f);
}
cvt(buf, buf, dn);
j = 0;
for (; j < dn * 3; j += 3, dst += dcn) {
dst[0] = saturate_cast(buf[j] * 255.f);
dst[1] = saturate_cast(buf[j + 1] * 255.f);
dst[2] = saturate_cast(buf[j + 2] * 255.f);
if (dcn == 4)
dst[3] = alpha;
}
}
}
int dstcn;
HSV2RGB_f cvt;
};
struct HLS2RGB_f
{
typedef float channel_type;
HLS2RGB_f(int _dstcn, int _blueIdx, float _hrange) : dstcn(_dstcn), blueIdx(_blueIdx), hscale(6.f / _hrange) {}
void operator()(const float* src, float* dst, int n) const
{
int i, bidx = blueIdx, dcn = dstcn;
float _hscale = hscale;
float alpha = ColorChannel::max();
n *= 3;
for (i = 0; i < n; i += 3, dst += dcn) {
float h = src[i], l = src[i + 1], s = src[i + 2];
float b, g, r;
if (s == 0)
b = g = r = l;
else {
static const int sector_data[][3] =
{ { 1, 3, 0 }, { 1, 0, 2 }, { 3, 0, 1 }, { 0, 2, 1 }, { 0, 1, 3 }, { 2, 1, 0 } };
float tab[4];
int sector;
float p2 = l <= 0.5f ? l*(1 + s) : l + s - l*s;
float p1 = 2 * l - p2;
h *= _hscale;
if (h < 0)
do h += 6; while (h < 0);
else if (h >= 6)
do h -= 6; while (h >= 6);
assert(0 <= h && h < 6);
sector = fbcFloor(h);
h -= sector;
tab[0] = p2;
tab[1] = p1;
tab[2] = p1 + (p2 - p1)*(1 - h);
tab[3] = p1 + (p2 - p1)*h;
b = tab[sector_data[sector][0]];
g = tab[sector_data[sector][1]];
r = tab[sector_data[sector][2]];
}
dst[bidx] = b;
dst[1] = g;
dst[bidx ^ 2] = r;
if (dcn == 4)
dst[3] = alpha;
}
}
int dstcn, blueIdx;
float hscale;
};
struct HLS2RGB_b
{
typedef uchar channel_type;
HLS2RGB_b(int _dstcn, int _blueIdx, int _hrange) : dstcn(_dstcn), cvt(3, _blueIdx, (float)_hrange) { }
void operator()(const uchar* src, uchar* dst, int n) const
{
int i, j, dcn = dstcn;
uchar alpha = ColorChannel::max();
float FBC_DECL_ALIGNED(16) buf[3 * BLOCK_SIZE];
for (i = 0; i < n; i += BLOCK_SIZE, src += BLOCK_SIZE * 3) {
int dn = std::min(n - i, (int)BLOCK_SIZE);
j = 0;
for (; j < dn * 3; j += 3) {
buf[j] = src[j];
buf[j + 1] = src[j + 1] * (1.f / 255.f);
buf[j + 2] = src[j + 2] * (1.f / 255.f);
}
cvt(buf, buf, dn);
j = 0;
for (; j < dn * 3; j += 3, dst += dcn) {
dst[0] = saturate_cast(buf[j] * 255.f);
dst[1] = saturate_cast(buf[j + 1] * 255.f);
dst[2] = saturate_cast(buf[j + 2] * 255.f);
if (dcn == 4)
dst[3] = alpha;
}
}
}
int dstcn;
HLS2RGB_f cvt;
};
static const float D65[] = { 0.950456f, 1.f, 1.088754f };
enum { LAB_CBRT_TAB_SIZE = 1024, GAMMA_TAB_SIZE = 1024 };
static float LabCbrtTab[LAB_CBRT_TAB_SIZE * 4];
static const float LabCbrtTabScale = LAB_CBRT_TAB_SIZE / 1.5f;
static float sRGBGammaTab[GAMMA_TAB_SIZE * 4], sRGBInvGammaTab[GAMMA_TAB_SIZE * 4];
static const float GammaTabScale = (float)GAMMA_TAB_SIZE;
static ushort sRGBGammaTab_b[256], linearGammaTab_b[256];
#undef lab_shift
#define lab_shift xyz_shift
#define gamma_shift 3
#define lab_shift2 (lab_shift + gamma_shift)
#define LAB_CBRT_TAB_SIZE_B (256*3/2*(1<(255.f*(1 << gamma_shift)*(x <= 0.04045f ? x*(1.f / 12.92f) : (float)std::pow((double)(x + 0.055)*(1. / 1.055), 2.4)));
linearGammaTab_b[i] = (ushort)(i*(1 << gamma_shift));
}
for (i = 0; i < LAB_CBRT_TAB_SIZE_B; i++) {
float x = i*(1.f / (255.f*(1 << gamma_shift)));
LabCbrtTab_b[i] = saturate_cast((1 << lab_shift2)*(x < 0.008856f ? x*7.787f + 0.13793103448275862f : fbcCbrt(x)));
}
initialized = true;
}
}
struct RGB2Lab_b
{
typedef uchar channel_type;
RGB2Lab_b(int _srccn, int blueIdx, const float* _coeffs, const float* _whitept, bool _srgb) : srccn(_srccn), srgb(_srgb)
{
static volatile int _3 = 3;
initLabTabs();
if (!_coeffs)
_coeffs = sRGB2XYZ_D65;
if (!_whitept)
_whitept = D65;
float scale[] = {
(1 << lab_shift) / _whitept[0],
(float)(1 << lab_shift),
(1 << lab_shift) / _whitept[2]
};
for (int i = 0; i < _3; i++) {
coeffs[i * 3 + (blueIdx ^ 2)] = fbcRound(_coeffs[i * 3] * scale[i]);
coeffs[i * 3 + 1] = fbcRound(_coeffs[i * 3 + 1] * scale[i]);
coeffs[i * 3 + blueIdx] = fbcRound(_coeffs[i * 3 + 2] * scale[i]);
FBC_Assert(coeffs[i] >= 0 && coeffs[i * 3 + 1] >= 0 && coeffs[i * 3 + 2] >= 0 &&
coeffs[i * 3] + coeffs[i * 3 + 1] + coeffs[i * 3 + 2] < 2 * (1 << lab_shift));
}
}
void operator()(const uchar* src, uchar* dst, int n) const
{
const int Lscale = (116 * 255 + 50) / 100;
const int Lshift = -((16 * 255 * (1 << lab_shift2) + 50) / 100);
const ushort* tab = srgb ? sRGBGammaTab_b : linearGammaTab_b;
int i, scn = srccn;
int C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
n *= 3;
for (i = 0; i < n; i += 3, src += scn) {
int R = tab[src[0]], G = tab[src[1]], B = tab[src[2]];
int fX = LabCbrtTab_b[FBC_DESCALE(R*C0 + G*C1 + B*C2, lab_shift)];
int fY = LabCbrtTab_b[FBC_DESCALE(R*C3 + G*C4 + B*C5, lab_shift)];
int fZ = LabCbrtTab_b[FBC_DESCALE(R*C6 + G*C7 + B*C8, lab_shift)];
int L = FBC_DESCALE(Lscale*fY + Lshift, lab_shift2);
int a = FBC_DESCALE(500 * (fX - fY) + 128 * (1 << lab_shift2), lab_shift2);
int b = FBC_DESCALE(200 * (fY - fZ) + 128 * (1 << lab_shift2), lab_shift2);
dst[i] = saturate_cast(L);
dst[i + 1] = saturate_cast(a);
dst[i + 2] = saturate_cast(b);
}
}
int srccn;
int coeffs[9];
bool srgb;
};
template static _Tp clip(_Tp value)
{
return value < 0.0f ? 0.0f : value > 1.0f ? 1.0f : value;
}
struct RGB2Lab_f
{
typedef float channel_type;
RGB2Lab_f(int _srccn, int blueIdx, const float* _coeffs, const float* _whitept, bool _srgb) : srccn(_srccn), srgb(_srgb)
{
volatile int _3 = 3;
initLabTabs();
if (!_coeffs)
_coeffs = sRGB2XYZ_D65;
if (!_whitept)
_whitept = D65;
float scale[] = { 1.0f / _whitept[0], 1.0f, 1.0f / _whitept[2] };
for (int i = 0; i < _3; i++) {
int j = i * 3;
coeffs[j + (blueIdx ^ 2)] = _coeffs[j] * scale[i];
coeffs[j + 1] = _coeffs[j + 1] * scale[i];
coeffs[j + blueIdx] = _coeffs[j + 2] * scale[i];
FBC_Assert(coeffs[j] >= 0 && coeffs[j + 1] >= 0 && coeffs[j + 2] >= 0 &&
coeffs[j] + coeffs[j + 1] + coeffs[j + 2] < 1.5f*LabCbrtTabScale);
}
}
void operator()(const float* src, float* dst, int n) const
{
int i, scn = srccn;
float gscale = GammaTabScale;
const float* gammaTab = srgb ? sRGBGammaTab : 0;
float C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
n *= 3;
static const float _1_3 = 1.0f / 3.0f;
static const float _a = 16.0f / 116.0f;
for (i = 0; i < n; i += 3, src += scn) {
float R = clip(src[0]);
float G = clip(src[1]);
float B = clip(src[2]);
if (gammaTab) {
R = splineInterpolate(R * gscale, gammaTab, GAMMA_TAB_SIZE);
G = splineInterpolate(G * gscale, gammaTab, GAMMA_TAB_SIZE);
B = splineInterpolate(B * gscale, gammaTab, GAMMA_TAB_SIZE);
}
float X = R*C0 + G*C1 + B*C2;
float Y = R*C3 + G*C4 + B*C5;
float Z = R*C6 + G*C7 + B*C8;
float FX = X > 0.008856f ? std::pow(X, _1_3) : (7.787f * X + _a);
float FY = Y > 0.008856f ? std::pow(Y, _1_3) : (7.787f * Y + _a);
float FZ = Z > 0.008856f ? std::pow(Z, _1_3) : (7.787f * Z + _a);
float L = Y > 0.008856f ? (116.f * FY - 16.f) : (903.3f * Y);
float a = 500.f * (FX - FY);
float b = 200.f * (FY - FZ);
dst[i] = L;
dst[i + 1] = a;
dst[i + 2] = b;
}
}
int srccn;
float coeffs[9];
bool srgb;
};
struct RGB2Luv_f
{
typedef float channel_type;
RGB2Luv_f(int _srccn, int blueIdx, const float* _coeffs, const float* whitept, bool _srgb) : srccn(_srccn), srgb(_srgb)
{
volatile int i;
initLabTabs();
if (!_coeffs) _coeffs = sRGB2XYZ_D65;
if (!whitept) whitept = D65;
for (i = 0; i < 3; i++) {
coeffs[i * 3] = _coeffs[i * 3];
coeffs[i * 3 + 1] = _coeffs[i * 3 + 1];
coeffs[i * 3 + 2] = _coeffs[i * 3 + 2];
if (blueIdx == 0)
std::swap(coeffs[i * 3], coeffs[i * 3 + 2]);
FBC_Assert(coeffs[i * 3] >= 0 && coeffs[i * 3 + 1] >= 0 && coeffs[i * 3 + 2] >= 0 &&
coeffs[i * 3] + coeffs[i * 3 + 1] + coeffs[i * 3 + 2] < 1.5f);
}
float d = 1.f / (whitept[0] + whitept[1] * 15 + whitept[2] * 3);
un = 4 * whitept[0] * d;
vn = 9 * whitept[1] * d;
FBC_Assert(whitept[1] == 1.f);
}
void operator()(const float* src, float* dst, int n) const
{
int i, scn = srccn;
float gscale = GammaTabScale;
const float* gammaTab = srgb ? sRGBGammaTab : 0;
float C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
float _un = 13 * un, _vn = 13 * vn;
n *= 3;
for (i = 0; i < n; i += 3, src += scn) {
float R = src[0], G = src[1], B = src[2];
if (gammaTab) {
R = splineInterpolate(R*gscale, gammaTab, GAMMA_TAB_SIZE);
G = splineInterpolate(G*gscale, gammaTab, GAMMA_TAB_SIZE);
B = splineInterpolate(B*gscale, gammaTab, GAMMA_TAB_SIZE);
}
float X = R*C0 + G*C1 + B*C2;
float Y = R*C3 + G*C4 + B*C5;
float Z = R*C6 + G*C7 + B*C8;
float L = splineInterpolate(Y*LabCbrtTabScale, LabCbrtTab, LAB_CBRT_TAB_SIZE);
L = 116.f*L - 16.f;
float d = (4 * 13) / std::max(X + 15 * Y + 3 * Z, FLT_EPSILON);
float u = L*(X*d - _un);
float v = L*((9 * 0.25f)*Y*d - _vn);
dst[i] = L; dst[i + 1] = u; dst[i + 2] = v;
}
}
int srccn;
float coeffs[9], un, vn;
bool srgb;
};
struct RGB2Luv_b
{
typedef uchar channel_type;
RGB2Luv_b(int _srccn, int blueIdx, const float* _coeffs, const float* _whitept, bool _srgb)
: srccn(_srccn), cvt(3, blueIdx, _coeffs, _whitept, _srgb) { }
void operator()(const uchar* src, uchar* dst, int n) const
{
int i, j, scn = srccn;
float FBC_DECL_ALIGNED(16) buf[3 * BLOCK_SIZE];
for (i = 0; i < n; i += BLOCK_SIZE, dst += BLOCK_SIZE * 3) {
int dn = std::min(n - i, (int)BLOCK_SIZE);
j = 0;
for (; j < dn * 3; j += 3, src += scn) {
buf[j] = src[0] * (1.f / 255.f);
buf[j + 1] = (float)(src[1] * (1.f / 255.f));
buf[j + 2] = (float)(src[2] * (1.f / 255.f));
}
cvt(buf, buf, dn);
j = 0;
for (; j < dn * 3; j += 3) {
dst[j] = saturate_cast(buf[j] * 2.55f);
dst[j + 1] = saturate_cast(buf[j + 1] * 0.72033898305084743f + 96.525423728813564f);
dst[j + 2] = saturate_cast(buf[j + 2] * 0.9732824427480916f + 136.259541984732824f);
}
}
}
int srccn;
RGB2Luv_f cvt;
};
struct Lab2RGB_f
{
typedef float channel_type;
Lab2RGB_f(int _dstcn, int blueIdx, const float* _coeffs, const float* _whitept, bool _srgb) : dstcn(_dstcn), srgb(_srgb)
{
initLabTabs();
if (!_coeffs)
_coeffs = XYZ2sRGB_D65;
if (!_whitept)
_whitept = D65;
for (int i = 0; i < 3; i++) {
coeffs[i + (blueIdx ^ 2) * 3] = _coeffs[i] * _whitept[i];
coeffs[i + 3] = _coeffs[i + 3] * _whitept[i];
coeffs[i + blueIdx * 3] = _coeffs[i + 6] * _whitept[i];
}
}
void operator()(const float* src, float* dst, int n) const
{
int i, dcn = dstcn;
const float* gammaTab = srgb ? sRGBInvGammaTab : 0;
float gscale = GammaTabScale;
float C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
float alpha = ColorChannel::max();
n *= 3;
static const float lThresh = 0.008856f * 903.3f;
static const float fThresh = 7.787f * 0.008856f + 16.0f / 116.0f;
for (i = 0; i < n; i += 3, dst += dcn) {
float li = src[i];
float ai = src[i + 1];
float bi = src[i + 2];
float y, fy;
if (li <= lThresh) {
y = li / 903.3f;
fy = 7.787f * y + 16.0f / 116.0f;
} else {
fy = (li + 16.0f) / 116.0f;
y = fy * fy * fy;
}
float fxz[] = { ai / 500.0f + fy, fy - bi / 200.0f };
for (int j = 0; j < 2; j++)
if (fxz[j] <= fThresh)
fxz[j] = (fxz[j] - 16.0f / 116.0f) / 7.787f;
else
fxz[j] = fxz[j] * fxz[j] * fxz[j];
float x = fxz[0], z = fxz[1];
float ro = C0 * x + C1 * y + C2 * z;
float go = C3 * x + C4 * y + C5 * z;
float bo = C6 * x + C7 * y + C8 * z;
ro = clip(ro);
go = clip(go);
bo = clip(bo);
if (gammaTab) {
ro = splineInterpolate(ro * gscale, gammaTab, GAMMA_TAB_SIZE);
go = splineInterpolate(go * gscale, gammaTab, GAMMA_TAB_SIZE);
bo = splineInterpolate(bo * gscale, gammaTab, GAMMA_TAB_SIZE);
}
dst[0] = ro, dst[1] = go, dst[2] = bo;
if (dcn == 4)
dst[3] = alpha;
}
}
int dstcn;
float coeffs[9];
bool srgb;
};
struct Lab2RGB_b
{
typedef uchar channel_type;
Lab2RGB_b(int _dstcn, int blueIdx, const float* _coeffs, const float* _whitept, bool _srgb)
: dstcn(_dstcn), cvt(3, blueIdx, _coeffs, _whitept, _srgb) { }
void operator()(const uchar* src, uchar* dst, int n) const
{
int i, j, dcn = dstcn;
uchar alpha = ColorChannel::max();
float FBC_DECL_ALIGNED(16) buf[3 * BLOCK_SIZE];
for (i = 0; i < n; i += BLOCK_SIZE, src += BLOCK_SIZE * 3)
{
int dn = std::min(n - i, (int)BLOCK_SIZE);
j = 0;
for (; j < dn * 3; j += 3) {
buf[j] = src[j] * (100.f / 255.f);
buf[j + 1] = (float)(src[j + 1] - 128);
buf[j + 2] = (float)(src[j + 2] - 128);
}
cvt(buf, buf, dn);
j = 0;
for (; j < dn * 3; j += 3, dst += dcn) {
dst[0] = saturate_cast(buf[j] * 255.f);
dst[1] = saturate_cast(buf[j + 1] * 255.f);
dst[2] = saturate_cast(buf[j + 2] * 255.f);
if (dcn == 4)
dst[3] = alpha;
}
}
}
int dstcn;
Lab2RGB_f cvt;
};
struct Luv2RGB_f
{
typedef float channel_type;
Luv2RGB_f(int _dstcn, int blueIdx, const float* _coeffs, const float* whitept, bool _srgb) : dstcn(_dstcn), srgb(_srgb)
{
initLabTabs();
if (!_coeffs) _coeffs = XYZ2sRGB_D65;
if (!whitept) whitept = D65;
for (int i = 0; i < 3; i++) {
coeffs[i + (blueIdx ^ 2) * 3] = _coeffs[i];
coeffs[i + 3] = _coeffs[i + 3];
coeffs[i + blueIdx * 3] = _coeffs[i + 6];
}
float d = 1.f / (whitept[0] + whitept[1] * 15 + whitept[2] * 3);
un = 4 * whitept[0] * d;
vn = 9 * whitept[1] * d;
FBC_Assert(whitept[1] == 1.f);
}
void operator()(const float* src, float* dst, int n) const
{
int i, dcn = dstcn;
const float* gammaTab = srgb ? sRGBInvGammaTab : 0;
float gscale = GammaTabScale;
float C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
float alpha = ColorChannel::max();
float _un = un, _vn = vn;
n *= 3;
for (i = 0; i < n; i += 3, dst += dcn) {
float L = src[i], u = src[i + 1], v = src[i + 2], d, X, Y, Z;
Y = (L + 16.f) * (1.f / 116.f);
Y = Y*Y*Y;
d = (1.f / 13.f) / L;
u = u*d + _un;
v = v*d + _vn;
float iv = 1.f / v;
X = 2.25f * u * Y * iv;
Z = (12 - 3 * u - 20 * v) * Y * 0.25f * iv;
float R = X*C0 + Y*C1 + Z*C2;
float G = X*C3 + Y*C4 + Z*C5;
float B = X*C6 + Y*C7 + Z*C8;
R = std::min(std::max(R, 0.f), 1.f);
G = std::min(std::max(G, 0.f), 1.f);
B = std::min(std::max(B, 0.f), 1.f);
if (gammaTab) {
R = splineInterpolate(R*gscale, gammaTab, GAMMA_TAB_SIZE);
G = splineInterpolate(G*gscale, gammaTab, GAMMA_TAB_SIZE);
B = splineInterpolate(B*gscale, gammaTab, GAMMA_TAB_SIZE);
}
dst[0] = R; dst[1] = G; dst[2] = B;
if (dcn == 4)
dst[3] = alpha;
}
}
int dstcn;
float coeffs[9], un, vn;
bool srgb;
};
struct Luv2RGB_b
{
typedef uchar channel_type;
Luv2RGB_b(int _dstcn, int blueIdx, const float* _coeffs, const float* _whitept, bool _srgb)
: dstcn(_dstcn), cvt(3, blueIdx, _coeffs, _whitept, _srgb) { }
void operator()(const uchar* src, uchar* dst, int n) const
{
int i, j, dcn = dstcn;
uchar alpha = ColorChannel::max();
float FBC_DECL_ALIGNED(16) buf[3 * BLOCK_SIZE];
for (i = 0; i < n; i += BLOCK_SIZE, src += BLOCK_SIZE * 3) {
int dn = std::min(n - i, (int)BLOCK_SIZE);
j = 0;
for (; j < dn * 3; j += 3) {
buf[j] = src[j] * (100.f / 255.f);
buf[j + 1] = (float)(src[j + 1] * 1.388235294117647f - 134.f);
buf[j + 2] = (float)(src[j + 2] * 1.027450980392157f - 140.f);
}
cvt(buf, buf, dn);
j = 0;
for (; j < dn * 3; j += 3, dst += dcn) {
dst[0] = saturate_cast(buf[j] * 255.f);
dst[1] = saturate_cast(buf[j + 1] * 255.f);
dst[2] = saturate_cast(buf[j + 2] * 255.f);
if (dcn == 4)
dst[3] = alpha;
}
}
}
int dstcn;
Luv2RGB_f cvt;
};
const int ITUR_BT_601_CY = 1220542;
const int ITUR_BT_601_CUB = 2116026;
const int ITUR_BT_601_CUG = -409993;
const int ITUR_BT_601_CVG = -852492;
const int ITUR_BT_601_CVR = 1673527;
const int ITUR_BT_601_SHIFT = 20;
// Coefficients for RGB to YUV420p conversion
const int ITUR_BT_601_CRY = 269484;
const int ITUR_BT_601_CGY = 528482;
const int ITUR_BT_601_CBY = 102760;
const int ITUR_BT_601_CRU = -155188;
const int ITUR_BT_601_CGU = -305135;
const int ITUR_BT_601_CBU = 460324;
const int ITUR_BT_601_CGV = -385875;
const int ITUR_BT_601_CBV = -74448;
template
struct YUV420sp2RGB888Invoker
{
Mat_<_Tp, chs>* dst;
const uchar* my1, *muv;
int width, stride;
YUV420sp2RGB888Invoker(Mat_<_Tp, chs>* _dst, int _stride, const uchar* _y1, const uchar* _uv)
: dst(_dst), my1(_y1), muv(_uv), width(_dst->cols), stride(_stride) {}
void operator()(const Range& range) const
{
int rangeBegin = range.start * 2;
int rangeEnd = range.end * 2;
//R = 1.164(Y - 16) + 1.596(V - 128)
//G = 1.164(Y - 16) - 0.813(V - 128) - 0.391(U - 128)
//B = 1.164(Y - 16) + 2.018(U - 128)
//R = (1220542(Y - 16) + 1673527(V - 128) + (1 << 19)) >> 20
//G = (1220542(Y - 16) - 852492(V - 128) - 409993(U - 128) + (1 << 19)) >> 20
//B = (1220542(Y - 16) + 2116026(U - 128) + (1 << 19)) >> 20
const uchar* y1 = my1 + rangeBegin * stride, *uv = muv + rangeBegin * stride / 2;
for (int j = rangeBegin; j < rangeEnd; j += 2, y1 += stride * 2, uv += stride) {
uchar* row1 = (uchar*)dst->ptr(j);
uchar* row2 = (uchar*)dst->ptr(j + 1);
const uchar* y2 = y1 + stride;
for (int i = 0; i < width; i += 2, row1 += 6, row2 += 6) {
int u = int(uv[i + 0 + uIdx]) - 128;
int v = int(uv[i + 1 - uIdx]) - 128;
int ruv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CVR * v;
int guv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CVG * v + ITUR_BT_601_CUG * u;
int buv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CUB * u;
int y00 = std::max(0, int(y1[i]) - 16) * ITUR_BT_601_CY;
row1[2 - bIdx] = saturate_cast((y00 + ruv) >> ITUR_BT_601_SHIFT);
row1[1] = saturate_cast((y00 + guv) >> ITUR_BT_601_SHIFT);
row1[bIdx] = saturate_cast((y00 + buv) >> ITUR_BT_601_SHIFT);
int y01 = std::max(0, int(y1[i + 1]) - 16) * ITUR_BT_601_CY;
row1[5 - bIdx] = saturate_cast((y01 + ruv) >> ITUR_BT_601_SHIFT);
row1[4] = saturate_cast((y01 + guv) >> ITUR_BT_601_SHIFT);
row1[3 + bIdx] = saturate_cast((y01 + buv) >> ITUR_BT_601_SHIFT);
int y10 = std::max(0, int(y2[i]) - 16) * ITUR_BT_601_CY;
row2[2 - bIdx] = saturate_cast((y10 + ruv) >> ITUR_BT_601_SHIFT);
row2[1] = saturate_cast((y10 + guv) >> ITUR_BT_601_SHIFT);
row2[bIdx] = saturate_cast((y10 + buv) >> ITUR_BT_601_SHIFT);
int y11 = std::max(0, int(y2[i + 1]) - 16) * ITUR_BT_601_CY;
row2[5 - bIdx] = saturate_cast((y11 + ruv) >> ITUR_BT_601_SHIFT);
row2[4] = saturate_cast((y11 + guv) >> ITUR_BT_601_SHIFT);
row2[3 + bIdx] = saturate_cast((y11 + buv) >> ITUR_BT_601_SHIFT);
}
}
}
};
template
struct YUV420sp2RGBA8888Invoker
{
Mat_<_Tp, chs>* dst;
const uchar* my1, *muv;
int width, stride;
YUV420sp2RGBA8888Invoker(Mat_<_Tp, chs>* _dst, int _stride, const uchar* _y1, const uchar* _uv)
: dst(_dst), my1(_y1), muv(_uv), width(_dst->cols), stride(_stride) {}
void operator()(const Range& range) const
{
int rangeBegin = range.start * 2;
int rangeEnd = range.end * 2;
//R = 1.164(Y - 16) + 1.596(V - 128)
//G = 1.164(Y - 16) - 0.813(V - 128) - 0.391(U - 128)
//B = 1.164(Y - 16) + 2.018(U - 128)
//R = (1220542(Y - 16) + 1673527(V - 128) + (1 << 19)) >> 20
//G = (1220542(Y - 16) - 852492(V - 128) - 409993(U - 128) + (1 << 19)) >> 20
//B = (1220542(Y - 16) + 2116026(U - 128) + (1 << 19)) >> 20
const uchar* y1 = my1 + rangeBegin * stride, *uv = muv + rangeBegin * stride / 2;
for (int j = rangeBegin; j < rangeEnd; j += 2, y1 += stride * 2, uv += stride) {
uchar* row1 = (uchar*)dst->ptr(j);
uchar* row2 = (uchar*)dst->ptr(j + 1);
const uchar* y2 = y1 + stride;
for (int i = 0; i < width; i += 2, row1 += 8, row2 += 8) {
int u = int(uv[i + 0 + uIdx]) - 128;
int v = int(uv[i + 1 - uIdx]) - 128;
int ruv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CVR * v;
int guv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CVG * v + ITUR_BT_601_CUG * u;
int buv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CUB * u;
int y00 = std::max(0, int(y1[i]) - 16) * ITUR_BT_601_CY;
row1[2 - bIdx] = saturate_cast((y00 + ruv) >> ITUR_BT_601_SHIFT);
row1[1] = saturate_cast((y00 + guv) >> ITUR_BT_601_SHIFT);
row1[bIdx] = saturate_cast((y00 + buv) >> ITUR_BT_601_SHIFT);
row1[3] = uchar(0xff);
int y01 = std::max(0, int(y1[i + 1]) - 16) * ITUR_BT_601_CY;
row1[6 - bIdx] = saturate_cast((y01 + ruv) >> ITUR_BT_601_SHIFT);
row1[5] = saturate_cast((y01 + guv) >> ITUR_BT_601_SHIFT);
row1[4 + bIdx] = saturate_cast((y01 + buv) >> ITUR_BT_601_SHIFT);
row1[7] = uchar(0xff);
int y10 = std::max(0, int(y2[i]) - 16) * ITUR_BT_601_CY;
row2[2 - bIdx] = saturate_cast((y10 + ruv) >> ITUR_BT_601_SHIFT);
row2[1] = saturate_cast((y10 + guv) >> ITUR_BT_601_SHIFT);
row2[bIdx] = saturate_cast((y10 + buv) >> ITUR_BT_601_SHIFT);
row2[3] = uchar(0xff);
int y11 = std::max(0, int(y2[i + 1]) - 16) * ITUR_BT_601_CY;
row2[6 - bIdx] = saturate_cast((y11 + ruv) >> ITUR_BT_601_SHIFT);
row2[5] = saturate_cast((y11 + guv) >> ITUR_BT_601_SHIFT);
row2[4 + bIdx] = saturate_cast((y11 + buv) >> ITUR_BT_601_SHIFT);
row2[7] = uchar(0xff);
}
}
}
};
template
struct YUV420p2RGB888Invoker
{
Mat_<_Tp, chs>* dst;
const uchar* my1, *mu, *mv;
int width, stride;
int ustepIdx, vstepIdx;
YUV420p2RGB888Invoker(Mat_<_Tp, chs>* _dst, int _stride, const uchar* _y1, const uchar* _u, const uchar* _v, int _ustepIdx, int _vstepIdx)
: dst(_dst), my1(_y1), mu(_u), mv(_v), width(_dst->cols), stride(_stride), ustepIdx(_ustepIdx), vstepIdx(_vstepIdx) {}
void operator()(const Range& range) const
{
const int rangeBegin = range.start * 2;
const int rangeEnd = range.end * 2;
int uvsteps[2] = { width / 2, stride - width / 2 };
int usIdx = ustepIdx, vsIdx = vstepIdx;
const uchar* y1 = my1 + rangeBegin * stride;
const uchar* u1 = mu + (range.start / 2) * stride;
const uchar* v1 = mv + (range.start / 2) * stride;
if (range.start % 2 == 1) {
u1 += uvsteps[(usIdx++) & 1];
v1 += uvsteps[(vsIdx++) & 1];
}
for (int j = rangeBegin; j < rangeEnd; j += 2, y1 += stride * 2, u1 += uvsteps[(usIdx++) & 1], v1 += uvsteps[(vsIdx++) & 1]) {
uchar* row1 = (uchar*)dst->ptr(j);
uchar* row2 = (uchar*)dst->ptr(j + 1);
const uchar* y2 = y1 + stride;
for (int i = 0; i < width / 2; i += 1, row1 += 6, row2 += 6) {
int u = int(u1[i]) - 128;
int v = int(v1[i]) - 128;
int ruv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CVR * v;
int guv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CVG * v + ITUR_BT_601_CUG * u;
int buv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CUB * u;
int y00 = std::max(0, int(y1[2 * i]) - 16) * ITUR_BT_601_CY;
row1[2 - bIdx] = saturate_cast((y00 + ruv) >> ITUR_BT_601_SHIFT);
row1[1] = saturate_cast((y00 + guv) >> ITUR_BT_601_SHIFT);
row1[bIdx] = saturate_cast((y00 + buv) >> ITUR_BT_601_SHIFT);
int y01 = std::max(0, int(y1[2 * i + 1]) - 16) * ITUR_BT_601_CY;
row1[5 - bIdx] = saturate_cast((y01 + ruv) >> ITUR_BT_601_SHIFT);
row1[4] = saturate_cast((y01 + guv) >> ITUR_BT_601_SHIFT);
row1[3 + bIdx] = saturate_cast((y01 + buv) >> ITUR_BT_601_SHIFT);
int y10 = std::max(0, int(y2[2 * i]) - 16) * ITUR_BT_601_CY;
row2[2 - bIdx] = saturate_cast((y10 + ruv) >> ITUR_BT_601_SHIFT);
row2[1] = saturate_cast((y10 + guv) >> ITUR_BT_601_SHIFT);
row2[bIdx] = saturate_cast((y10 + buv) >> ITUR_BT_601_SHIFT);
int y11 = std::max(0, int(y2[2 * i + 1]) - 16) * ITUR_BT_601_CY;
row2[5 - bIdx] = saturate_cast((y11 + ruv) >> ITUR_BT_601_SHIFT);
row2[4] = saturate_cast((y11 + guv) >> ITUR_BT_601_SHIFT);
row2[3 + bIdx] = saturate_cast((y11 + buv) >> ITUR_BT_601_SHIFT);
}
}
}
};
template
struct YUV420p2RGBA8888Invoker
{
Mat_<_Tp, chs>* dst;
const uchar* my1, *mu, *mv;
int width, stride;
int ustepIdx, vstepIdx;
YUV420p2RGBA8888Invoker(Mat_<_Tp, chs>* _dst, int _stride, const uchar* _y1, const uchar* _u, const uchar* _v, int _ustepIdx, int _vstepIdx)
: dst(_dst), my1(_y1), mu(_u), mv(_v), width(_dst->cols), stride(_stride), ustepIdx(_ustepIdx), vstepIdx(_vstepIdx) {}
void operator()(const Range& range) const
{
int rangeBegin = range.start * 2;
int rangeEnd = range.end * 2;
int uvsteps[2] = { width / 2, stride - width / 2 };
int usIdx = ustepIdx, vsIdx = vstepIdx;
const uchar* y1 = my1 + rangeBegin * stride;
const uchar* u1 = mu + (range.start / 2) * stride;
const uchar* v1 = mv + (range.start / 2) * stride;
if (range.start % 2 == 1) {
u1 += uvsteps[(usIdx++) & 1];
v1 += uvsteps[(vsIdx++) & 1];
}
for (int j = rangeBegin; j < rangeEnd; j += 2, y1 += stride * 2, u1 += uvsteps[(usIdx++) & 1], v1 += uvsteps[(vsIdx++) & 1]) {
uchar* row1 = (uchar*)dst->ptr(j);
uchar* row2 = (uchar*)dst->ptr(j + 1);
const uchar* y2 = y1 + stride;
for (int i = 0; i < width / 2; i += 1, row1 += 8, row2 += 8) {
int u = int(u1[i]) - 128;
int v = int(v1[i]) - 128;
int ruv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CVR * v;
int guv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CVG * v + ITUR_BT_601_CUG * u;
int buv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CUB * u;
int y00 = std::max(0, int(y1[2 * i]) - 16) * ITUR_BT_601_CY;
row1[2 - bIdx] = saturate_cast((y00 + ruv) >> ITUR_BT_601_SHIFT);
row1[1] = saturate_cast((y00 + guv) >> ITUR_BT_601_SHIFT);
row1[bIdx] = saturate_cast((y00 + buv) >> ITUR_BT_601_SHIFT);
row1[3] = uchar(0xff);
int y01 = std::max(0, int(y1[2 * i + 1]) - 16) * ITUR_BT_601_CY;
row1[6 - bIdx] = saturate_cast((y01 + ruv) >> ITUR_BT_601_SHIFT);
row1[5] = saturate_cast((y01 + guv) >> ITUR_BT_601_SHIFT);
row1[4 + bIdx] = saturate_cast((y01 + buv) >> ITUR_BT_601_SHIFT);
row1[7] = uchar(0xff);
int y10 = std::max(0, int(y2[2 * i]) - 16) * ITUR_BT_601_CY;
row2[2 - bIdx] = saturate_cast((y10 + ruv) >> ITUR_BT_601_SHIFT);
row2[1] = saturate_cast((y10 + guv) >> ITUR_BT_601_SHIFT);
row2[bIdx] = saturate_cast((y10 + buv) >> ITUR_BT_601_SHIFT);
row2[3] = uchar(0xff);
int y11 = std::max(0, int(y2[2 * i + 1]) - 16) * ITUR_BT_601_CY;
row2[6 - bIdx] = saturate_cast((y11 + ruv) >> ITUR_BT_601_SHIFT);
row2[5] = saturate_cast((y11 + guv) >> ITUR_BT_601_SHIFT);
row2[4 + bIdx] = saturate_cast((y11 + buv) >> ITUR_BT_601_SHIFT);
row2[7] = uchar(0xff);
}
}
}
};
template
inline void cvtYUV420sp2RGB(Mat_<_Tp, chs>& _dst, int _stride, const uchar* _y1, const uchar* _uv)
{
YUV420sp2RGB888Invoker<_Tp, chs, bIdx, uIdx> converter(&_dst, _stride, _y1, _uv);
converter(Range(0, _dst.rows / 2));
}
template
inline void cvtYUV420sp2RGBA(Mat_<_Tp, chs>& _dst, int _stride, const uchar* _y1, const uchar* _uv)
{
YUV420sp2RGBA8888Invoker<_Tp, chs, bIdx, uIdx> converter(&_dst, _stride, _y1, _uv);
converter(Range(0, _dst.rows / 2));
}
template
inline void cvtYUV420p2RGB(Mat_<_Tp, chs>& _dst, int _stride, const uchar* _y1, const uchar* _u, const uchar* _v, int ustepIdx, int vstepIdx)
{
YUV420p2RGB888Invoker<_Tp, chs, bIdx> converter(&_dst, _stride, _y1, _u, _v, ustepIdx, vstepIdx);
converter(Range(0, _dst.rows / 2));
}
template
inline void cvtYUV420p2RGBA(Mat_<_Tp, chs>& _dst, int _stride, const uchar* _y1, const uchar* _u, const uchar* _v, int ustepIdx, int vstepIdx)
{
YUV420p2RGBA8888Invoker<_Tp, chs, bIdx> converter(&_dst, _stride, _y1, _u, _v, ustepIdx, vstepIdx);
converter(Range(0, _dst.rows / 2));
}
template
struct RGB888toYUV420pInvoker
{
RGB888toYUV420pInvoker(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>* dst, const int uIdx)
: src_(src), dst_(dst), uIdx_(uIdx) { }
void operator()(const Range& rowRange) const
{
const int w = src_.cols;
const int h = src_.rows;
const int cn = src_.channels;
for (int i = rowRange.start; i < rowRange.end; i++) {
const uchar* row0 = src_.ptr(2 * i);
const uchar* row1 = src_.ptr(2 * i + 1);
uchar* y = (uchar*)dst_->ptr(2 * i);
uchar* u = (uchar*)dst_->ptr(h + i / 2) + (i % 2) * (w / 2);
uchar* v = (uchar*)dst_->ptr(h + (i + h / 2) / 2) + ((i + h / 2) % 2) * (w / 2);
if (uIdx_ == 2) std::swap(u, v);
for (int j = 0, k = 0; j < w * cn; j += 2 * cn, k++) {
int r00 = row0[2 - bIdx + j]; int g00 = row0[1 + j]; int b00 = row0[bIdx + j];
int r01 = row0[2 - bIdx + cn + j]; int g01 = row0[1 + cn + j]; int b01 = row0[bIdx + cn + j];
int r10 = row1[2 - bIdx + j]; int g10 = row1[1 + j]; int b10 = row1[bIdx + j];
int r11 = row1[2 - bIdx + cn + j]; int g11 = row1[1 + cn + j]; int b11 = row1[bIdx + cn + j];
const int shifted16 = (16 << ITUR_BT_601_SHIFT);
const int halfShift = (1 << (ITUR_BT_601_SHIFT - 1));
int y00 = ITUR_BT_601_CRY * r00 + ITUR_BT_601_CGY * g00 + ITUR_BT_601_CBY * b00 + halfShift + shifted16;
int y01 = ITUR_BT_601_CRY * r01 + ITUR_BT_601_CGY * g01 + ITUR_BT_601_CBY * b01 + halfShift + shifted16;
int y10 = ITUR_BT_601_CRY * r10 + ITUR_BT_601_CGY * g10 + ITUR_BT_601_CBY * b10 + halfShift + shifted16;
int y11 = ITUR_BT_601_CRY * r11 + ITUR_BT_601_CGY * g11 + ITUR_BT_601_CBY * b11 + halfShift + shifted16;
y[2 * k + 0] = saturate_cast(y00 >> ITUR_BT_601_SHIFT);
y[2 * k + 1] = saturate_cast(y01 >> ITUR_BT_601_SHIFT);
y[2 * k + dst_->step + 0] = saturate_cast(y10 >> ITUR_BT_601_SHIFT);
y[2 * k + dst_->step + 1] = saturate_cast(y11 >> ITUR_BT_601_SHIFT);
const int shifted128 = (128 << ITUR_BT_601_SHIFT);
int u00 = ITUR_BT_601_CRU * r00 + ITUR_BT_601_CGU * g00 + ITUR_BT_601_CBU * b00 + halfShift + shifted128;
int v00 = ITUR_BT_601_CBU * r00 + ITUR_BT_601_CGV * g00 + ITUR_BT_601_CBV * b00 + halfShift + shifted128;
u[k] = saturate_cast(u00 >> ITUR_BT_601_SHIFT);
v[k] = saturate_cast(v00 >> ITUR_BT_601_SHIFT);
}
}
}
private:
RGB888toYUV420pInvoker& operator=(const RGB888toYUV420pInvoker&);
const Mat_<_Tp, chs1>& src_;
Mat_<_Tp, chs2>* const dst_;
const int uIdx_;
};
template
static void cvtRGBtoYUV420p(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst)
{
RGB888toYUV420pInvoker<_Tp, chs1, chs2, bIdx> colorConverter(src, &dst, uIdx);
colorConverter(Range(0, src.rows / 2));
}
template
static int CvtColorLoop_RGB2RGB(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx)
{
Range range(0, src.rows);
const uchar* yS_ = src.ptr(range.start);
uchar* yD_ = (uchar*)dst.ptr(range.start);
int scn = src.channels, dcn = dst.channels;
for (int h = range.start; h < range.end; ++h, yS_ += src.step, yD_ += dst.step) {
int n = src.cols;
const _Tp* yS = (const _Tp*)yS_;
_Tp* yD = (_Tp*)yD_;
if (dcn == 3) {
n *= 3;
for (int i = 0; i < n; i += 3, yS += scn) {
_Tp t0 = yS[bidx], t1 = yS[1], t2 = yS[bidx ^ 2];
yD[i] = t0; yD[i + 1] = t1; yD[i + 2] = t2;
}
} else if (scn == 3) {
n *= 3;
_Tp alpha = ColorChannel<_Tp>::max(); // Note: _Tp = float: alpha = 1.0f
for (int i = 0; i < n; i += 3, yD += 4) {
_Tp t0 = yS[i], t1 = yS[i + 1], t2 = yS[i + 2];
yD[bidx] = t0; yD[1] = t1; yD[bidx ^ 2] = t2; yD[3] = alpha;
}
} else {
n *= 4;
for (int i = 0; i < n; i += 4) {
_Tp t0 = yS[i], t1 = yS[i + 1], t2 = yS[i + 2], t3 = yS[i + 3];
yD[i] = t2; yD[i + 1] = t1; yD[i + 2] = t0; yD[i + 3] = t3;
}
}
}
return 0;
}
template
static int CvtColorLoop_RGB2Gray(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx)
{
Range range(0, src.rows);
const uchar* yS = src.ptr(range.start);
uchar* yD = (uchar*)dst.ptr(range.start);
int scn = src.channels, dcn = dst.channels;
RGB2Gray<_Tp> rgb2gray(scn, bidx, 0);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
rgb2gray((const _Tp*)yS, (_Tp*)yD, src.cols);
}
return 0;
}
template
static int CvtColorLoop_Gray2RGB(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst)
{
Range range(0, src.rows);
const uchar* yS = src.ptr(range.start);
uchar* yD = (uchar*)dst.ptr(range.start);
int scn = src.channels, dcn = dst.channels;
Gray2RGB<_Tp> gray2rgb(dcn);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
gray2rgb((const _Tp*)yS, (_Tp*)yD, src.cols);
}
return 0;
}
template
static int CvtColorLoop_RGB2YCrCb(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, const float* coeffs_f, const int* coeffs_i)
{
Range range(0, src.rows);
const uchar* yS = src.ptr(range.start);
uchar* yD = (uchar*)dst.ptr(range.start);
int scn = src.channels, dcn = dst.channels;
if (sizeof(_Tp) == 4) {
RGB2YCrCb_f<_Tp> rgb2ycrcb(scn, bidx, coeffs_f);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
rgb2ycrcb((const _Tp*)yS, (_Tp*)yD, src.cols);
}
} else {
if (sizeof(_Tp) == 1) {
RGB2YCrCb_i rgb2ycrcb(scn, bidx, coeffs_i);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
rgb2ycrcb((const uchar*)yS, (uchar*)yD, src.cols);
}
} else {
RGB2YCrCb_i rgb2ycrcb(scn, bidx, coeffs_i);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
rgb2ycrcb((const ushort*)yS, (ushort*)yD, src.cols);
}
}
}
return 0;
}
template
static int CvtColorLoop_YCrCb2RGB(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, const float* coeffs_f, const int* coeffs_i)
{
Range range(0, src.rows);
const uchar* yS = src.ptr(range.start);
uchar* yD = (uchar*)dst.ptr(range.start);
int scn = src.channels, dcn = dst.channels;
if (sizeof(_Tp) == 4) {
YCrCb2RGB_f<_Tp> ycrcb2rgb(dcn, bidx, coeffs_f);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
ycrcb2rgb((const _Tp*)yS, (_Tp*)yD, src.cols);
}
} else {
if (sizeof(_Tp) == 1) {
YCrCb2RGB_i ycrcb2rgb(dcn, bidx, coeffs_i);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
ycrcb2rgb((const uchar*)yS, (uchar*)yD, src.cols);
}
}
else {
YCrCb2RGB_i ycrcb2rgb(dcn, bidx, coeffs_i);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
ycrcb2rgb((const ushort*)yS, (ushort*)yD, src.cols);
}
}
}
return 0;
}
template
static int CvtColorLoop_RGB2XYZ(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx)
{
Range range(0, src.rows);
const uchar* yS = src.ptr(range.start);
uchar* yD = (uchar*)dst.ptr(range.start);
int scn = src.channels, dcn = dst.channels;
if (sizeof(_Tp) == 4) {
RGB2XYZ_f<_Tp> rgb2xyz(scn, bidx, 0);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
rgb2xyz((const _Tp*)yS, (_Tp*)yD, src.cols);
}
} else {
if (sizeof(_Tp) == 1) {
RGB2XYZ_i rgb2xyz(scn, bidx, 0);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
rgb2xyz((const uchar*)yS, (uchar*)yD, src.cols);
}
} else {
RGB2XYZ_i rgb2xyz(scn, bidx, 0);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
rgb2xyz((const ushort*)yS, (ushort*)yD, src.cols);
}
}
}
return 0;
}
template
static int CvtColorLoop_XYZ2RGB(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx)
{
Range range(0, src.rows);
const uchar* yS = src.ptr(range.start);
uchar* yD = (uchar*)dst.ptr(range.start);
int scn = src.channels, dcn = dst.channels;
if (sizeof(_Tp) == 4) {
XYZ2RGB_f<_Tp> xyz2rgb(dcn, bidx, 0);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
xyz2rgb((const _Tp*)yS, (_Tp*)yD, src.cols);
}
} else {
if (sizeof(_Tp) == 1) {
XYZ2RGB_i xyz2rgb(dcn, bidx, 0);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
xyz2rgb((const uchar*)yS, (uchar*)yD, src.cols);
}
} else {
XYZ2RGB_i xyz2rgb(dcn, bidx, 0);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
xyz2rgb((const ushort*)yS, (ushort*)yD, src.cols);
}
}
}
return 0;
}
template
static int CvtColorLoop_RGB2HSV(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, int hrange)
{
Range range(0, src.rows);
const uchar* yS = src.ptr(range.start);
uchar* yD = (uchar*)dst.ptr(range.start);
int scn = src.channels, dcn = dst.channels;
if (sizeof(_Tp) == 1) {
RGB2HSV_b rgb2hsv(scn, bidx, hrange);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
rgb2hsv((const uchar*)yS, (uchar*)yD, src.cols);
}
} else {
RGB2HSV_f rgb2hsv(scn, bidx, (float)hrange);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
rgb2hsv((const float*)yS, (float*)yD, src.cols);
}
}
return 0;
}
template
static int CvtColorLoop_RGB2HLS(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, int hrange)
{
Range range(0, src.rows);
const uchar* yS = src.ptr(range.start);
uchar* yD = (uchar*)dst.ptr(range.start);
int scn = src.channels, dcn = dst.channels;
if (sizeof(_Tp) == 1) {
RGB2HLS_b rgb2hls(scn, bidx, hrange);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
rgb2hls((const uchar*)yS, (uchar*)yD, src.cols);
}
} else {
RGB2HLS_f rgb2hls(scn, bidx, (float)hrange);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
rgb2hls((const float*)yS, (float*)yD, src.cols);
}
}
return 0;
}
template
static int CvtColorLoop_HSV2RGB(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, int hrange)
{
Range range(0, src.rows);
const uchar* yS = src.ptr(range.start);
uchar* yD = (uchar*)dst.ptr(range.start);
int scn = src.channels, dcn = dst.channels;
if (sizeof(_Tp) == 1) {
HSV2RGB_b hsv2rgb(dcn, bidx, hrange);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
hsv2rgb((const uchar*)yS, (uchar*)yD, src.cols);
}
} else {
HSV2RGB_f hsv2rgb(dcn, bidx, (float)hrange);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
hsv2rgb((const float*)yS, (float*)yD, src.cols);
}
}
return 0;
}
template
static int CvtColorLoop_HLS2RGB(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, int hrange)
{
Range range(0, src.rows);
const uchar* yS = src.ptr(range.start);
uchar* yD = (uchar*)dst.ptr(range.start);
int scn = src.channels, dcn = dst.channels;
if (sizeof(_Tp) == 1) {
HLS2RGB_b hls2rgb(dcn, bidx, hrange);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
hls2rgb((const uchar*)yS, (uchar*)yD, src.cols);
}
} else {
HLS2RGB_f hls2rgb(dcn, bidx, (float)hrange);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
hls2rgb((const float*)yS, (float*)yD, src.cols);
}
}
return 0;
}
template
static int CvtColorLoop_RGB2Lab(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, const float* coeffs, const float* whitept, bool srgb)
{
Range range(0, src.rows);
const uchar* yS = src.ptr(range.start);
uchar* yD = (uchar*)dst.ptr(range.start);
int scn = src.channels, dcn = dst.channels;
if (sizeof(_Tp) == 1) {
RGB2Lab_b rgb2lab(scn, bidx, coeffs, whitept, srgb);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
rgb2lab((const uchar*)yS, (uchar*)yD, src.cols);
}
}
else {
RGB2Lab_f rgb2lab(scn, bidx, coeffs, whitept, srgb);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
rgb2lab((const float*)yS, (float*)yD, src.cols);
}
}
return 0;
}
template
static int CvtColorLoop_RGB2Luv(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, const float* coeffs, const float* whitept, bool srgb)
{
Range range(0, src.rows);
const uchar* yS = src.ptr(range.start);
uchar* yD = (uchar*)dst.ptr(range.start);
int scn = src.channels, dcn = dst.channels;
if (sizeof(_Tp) == 1) {
RGB2Luv_b rgb2luv(scn, bidx, coeffs, whitept, srgb);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
rgb2luv((const uchar*)yS, (uchar*)yD, src.cols);
}
}
else {
RGB2Luv_f rgb2luv(scn, bidx, coeffs, whitept, srgb);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
rgb2luv((const float*)yS, (float*)yD, src.cols);
}
}
return 0;
}
template
static int CvtColorLoop_Lab2RGB(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, const float* coeffs, const float* whitept, bool srgb)
{
Range range(0, src.rows);
const uchar* yS = src.ptr(range.start);
uchar* yD = (uchar*)dst.ptr(range.start);
int scn = src.channels, dcn = dst.channels;
if (sizeof(_Tp) == 1) {
Lab2RGB_b lab2rgb(dcn, bidx, coeffs, whitept, srgb);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
lab2rgb((const uchar*)yS, (uchar*)yD, src.cols);
}
}
else {
Lab2RGB_f lab2rgb(dcn, bidx, coeffs, whitept, srgb);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
lab2rgb((const float*)yS, (float*)yD, src.cols);
}
}
return 0;
}
template
static int CvtColorLoop_Luv2RGB(const Mat_<_Tp, chs1>& src, Mat_<_Tp, chs2>& dst, int bidx, const float* coeffs, const float* whitept, bool srgb)
{
Range range(0, src.rows);
const uchar* yS = src.ptr(range.start);
uchar* yD = (uchar*)dst.ptr(range.start);
int scn = src.channels, dcn = dst.channels;
if (sizeof(_Tp) == 1) {
Luv2RGB_b luv2rgb(dcn, bidx, coeffs, whitept, srgb);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
luv2rgb((const uchar*)yS, (uchar*)yD, src.cols);
}
}
else {
Luv2RGB_f luv2rgb(dcn, bidx, coeffs, whitept, srgb);
for (int i = range.start; i < range.end; ++i, yS += src.step, yD += dst.step) {
luv2rgb((const float*)yS, (float*)yD, src.cols);
}
}
return 0;
}
} // namespace fbc
#endif // FBC_CV_CVTCOLOR_HPP_
测试代码test_cvtColor.cpp:
#include
#include
#include
#include
#include "test_cvtColor.hpp"
int test_cvtColor_RGB2RGB()
{
cv::Mat mat = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
if (!mat.data) {
std::cout << "read image fail" << std::endl;
return -1;
}
int width = mat.cols;
int height = mat.rows;
// uchar
fbc::Mat3BGR mat1(height, width, mat.data);
fbc::Mat3BGR mat2(mat1);
fbc::Mat_ mat3(height, width);
fbc::cvtColor(mat2, mat3, fbc::CV_BGR2BGRA);
cv::Mat mat1_(height, width, CV_8UC3, mat.data);
cv::Mat mat2_;
mat1_.copyTo(mat2_);
cv::Mat mat3_(height, width, CV_8UC4);
cv::cvtColor(mat2_, mat3_, CV_BGR2BGRA);
assert(mat3.step == mat3_.step);
for (int y = 0; y < mat3.rows; y++) {
const fbc::uchar* p = mat3.ptr(y);
const uchar* p_ = mat3_.ptr(y);
for (int x = 0; x < mat3.step; x++) {
assert(p[x] == p_[x]);
}
}
// float
cv::Mat matf;
mat.convertTo(matf, CV_32FC3);
fbc::Mat_ mat4(height, width, matf.data);
fbc::Mat_ mat5(mat4);
fbc::Mat_ mat6(height, width);
fbc::cvtColor(mat5, mat6, fbc::CV_BGR2BGRA);
cv::Mat mat4_(height, width, CV_32FC3, matf.data);
cv::Mat mat5_;
mat4_.copyTo(mat5_);
cv::Mat mat6_(height, width, CV_32FC4);
cv::cvtColor(mat5_, mat6_, CV_BGR2BGRA);
assert(mat6.step == mat6_.step);
for (int y = 0; y < mat6.rows; y++) {
const fbc::uchar* p = mat6.ptr(y);
const uchar* p_ = mat6_.ptr(y);
for (int x = 0; x < mat6.step; x++) {
assert(p[x] == p_[x]);
}
}
return 0;
}
int test_cvtColor_RGB2Gray()
{
cv::Mat mat = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
if (!mat.data) {
std::cout << "read image fail" << std::endl;
return -1;
}
int width = mat.cols;
int height = mat.rows;
// uchar
fbc::Mat3BGR mat1(height, width, mat.data);
fbc::Mat3BGR mat2(mat1);
fbc::Mat1Gray mat3(height, width);
fbc::cvtColor(mat2, mat3, fbc::CV_BGR2GRAY);
cv::Mat mat1_(height, width, CV_8UC3, mat.data);
cv::Mat mat2_;
mat1_.copyTo(mat2_);
cv::Mat mat3_(height, width, CV_8UC1);
cv::cvtColor(mat2_, mat3_, CV_BGR2GRAY);
assert(mat3.step == mat3_.step);
for (int y = 0; y < mat3.rows; y++) {
const fbc::uchar* p = mat3.ptr(y);
const uchar* p_ = mat3_.ptr(y);
for (int x = 0; x < mat3.step; x++) {
assert(p[x] == p_[x]);
}
}
// float
cv::Mat matf;
mat.convertTo(matf, CV_32FC3);
fbc::Mat_ mat4(height, width, matf.data);
fbc::Mat_ mat5(mat4);
fbc::Mat_ mat6(height, width);
fbc::cvtColor(mat5, mat6, fbc::CV_BGR2GRAY);
cv::Mat mat4_(height, width, CV_32FC3, matf.data);
cv::Mat mat5_;
mat4_.copyTo(mat5_);
cv::Mat mat6_(height, width, CV_32FC1);
cv::cvtColor(mat5_, mat6_, CV_BGR2GRAY);
assert(mat6.step == mat6_.step);
for (int y = 0; y < mat6.rows; y++) {
const fbc::uchar* p = mat6.ptr(y);
const uchar* p_ = mat6_.ptr(y);
for (int x = 0; x < mat6.step; x++) {
assert(p[x] == p_[x]);
}
}
return 0;
}
int test_cvtColor_Gray2RGB()
{
cv::Mat mat = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
if (!mat.data) {
std::cout << "read image fail" << std::endl;
return -1;
}
cv::cvtColor(mat, mat, CV_BGR2GRAY);
int width = mat.cols;
int height = mat.rows;
// uchar
fbc::Mat1Gray mat1(height, width, mat.data);
fbc::Mat1Gray mat2(mat1);
fbc::Mat3BGR mat3(height, width);
fbc::cvtColor(mat2, mat3, fbc::CV_GRAY2BGR);
cv::Mat mat1_(height, width, CV_8UC1, mat.data);
cv::Mat mat2_;
mat1_.copyTo(mat2_);
cv::Mat mat3_(height, width, CV_8UC3);
cv::cvtColor(mat2_, mat3_, CV_GRAY2BGR);
assert(mat3.step == mat3_.step);
for (int y = 0; y < mat3.rows; y++) {
const fbc::uchar* p = mat3.ptr(y);
const uchar* p_ = mat3_.ptr(y);
for (int x = 0; x < mat3.step; x++) {
assert(p[x] == p_[x]);
}
}
// float
cv::Mat matf;
mat.convertTo(matf, CV_32FC1);
fbc::Mat_ mat4(height, width, matf.data);
fbc::Mat_ mat5(mat4);
fbc::Mat_ mat6(height, width);
fbc::cvtColor(mat5, mat6, fbc::CV_GRAY2BGR);
cv::Mat mat4_(height, width, CV_32FC1, matf.data);
cv::Mat mat5_;
mat4_.copyTo(mat5_);
cv::Mat mat6_(height, width, CV_32FC3);
cv::cvtColor(mat5_, mat6_, CV_GRAY2BGR);
assert(mat6.step == mat6_.step);
for (int y = 0; y < mat6.rows; y++) {
const fbc::uchar* p = mat6.ptr(y);
const uchar* p_ = mat6_.ptr(y);
for (int x = 0; x < mat6.step; x++) {
assert(p[x] == p_[x]);
}
}
return 0;
}
int test_cvtColor_RGB2YCrCb()
{
cv::Mat mat = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
if (!mat.data) {
std::cout << "read image fail" << std::endl;
return -1;
}
int width = mat.cols;
int height = mat.rows;
// uchar
fbc::Mat3BGR mat1(height, width, mat.data);
fbc::Mat3BGR mat2(mat1);
fbc::Mat_ mat3(height, width);
fbc::cvtColor(mat2, mat3, fbc::CV_BGR2YCrCb);
cv::Mat mat1_(height, width, CV_8UC3, mat.data);
cv::Mat mat2_;
mat1_.copyTo(mat2_);
cv::Mat mat3_(height, width, CV_8UC3);
cv::cvtColor(mat2_, mat3_, CV_BGR2YCrCb);
assert(mat3.step == mat3_.step);
for (int y = 0; y < mat3.rows; y++) {
const fbc::uchar* p = mat3.ptr(y);
const uchar* p_ = mat3_.ptr(y);
for (int x = 0; x < mat3.step; x++) {
assert(p[x] == p_[x]);
}
}
// float
cv::Mat matf;
mat.convertTo(matf, CV_32FC3);
fbc::Mat_ mat4(height, width, matf.data);
fbc::Mat_ mat5(mat4);
fbc::Mat_ mat6(height, width);
fbc::cvtColor(mat5, mat6, fbc::CV_BGR2YCrCb);
cv::Mat mat4_(height, width, CV_32FC3, matf.data);
cv::Mat mat5_;
mat4_.copyTo(mat5_);
cv::Mat mat6_(height, width, CV_32FC3);
cv::cvtColor(mat5_, mat6_, CV_BGR2YCrCb);
assert(mat6.step == mat6_.step);
for (int y = 0; y < mat6.rows; y++) {
const fbc::uchar* p = mat6.ptr(y);
const uchar* p_ = mat6_.ptr(y);
for (int x = 0; x < mat6.step; x++) {
assert(p[x] == p_[x]);
}
}
return 0;
}
int test_cvtColor_YCrCb2RGB()
{
cv::Mat mat = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
if (!mat.data) {
std::cout << "read image fail" << std::endl;
return -1;
}
cv::cvtColor(mat, mat, CV_BGR2YCrCb);
int width = mat.cols;
int height = mat.rows;
// uchar
fbc::Mat_ mat1(height, width, mat.data);
fbc::Mat_ mat2(mat1);
fbc::Mat3BGR mat3(height, width);
fbc::cvtColor(mat2, mat3, fbc::CV_YCrCb2BGR);
cv::Mat mat1_(height, width, CV_8UC3, mat.data);
cv::Mat mat2_;
mat1_.copyTo(mat2_);
cv::Mat mat3_(height, width, CV_8UC3);
cv::cvtColor(mat2_, mat3_, CV_YCrCb2BGR);
assert(mat3.step == mat3_.step);
for (int y = 0; y < mat3.rows; y++) {
const fbc::uchar* p = mat3.ptr(y);
const uchar* p_ = mat3_.ptr(y);
for (int x = 0; x < mat3.step; x++) {
assert(p[x] == p_[x]);
}
}
// float
cv::Mat matf;
mat.convertTo(matf, CV_32FC3);
fbc::Mat_ mat4(height, width, matf.data);
fbc::Mat_ mat5(mat4);
fbc::Mat_ mat6(height, width);
fbc::cvtColor(mat5, mat6, fbc::CV_YCrCb2BGR);
cv::Mat mat4_(height, width, CV_32FC3, matf.data);
cv::Mat mat5_;
mat4_.copyTo(mat5_);
cv::Mat mat6_(height, width, CV_32FC3);
cv::cvtColor(mat5_, mat6_, CV_YCrCb2BGR);
assert(mat6.step == mat6_.step);
for (int y = 0; y < mat6.rows; y++) {
const fbc::uchar* p = mat6.ptr(y);
const uchar* p_ = mat6_.ptr(y);
for (int x = 0; x < mat6.step; x++) {
assert(p[x] == p_[x]);
}
}
return 0;
}
int test_cvtColor_RGB2XYZ()
{
cv::Mat mat = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
if (!mat.data) {
std::cout << "read image fail" << std::endl;
return -1;
}
int width = mat.cols;
int height = mat.rows;
// uchar
fbc::Mat_ mat1(height, width, mat.data);
fbc::Mat_ mat2(mat1);
fbc::Mat_ mat3(height, width);
fbc::cvtColor(mat2, mat3, fbc::CV_BGR2XYZ);
cv::Mat mat1_(height, width, CV_8UC3, mat.data);
cv::Mat mat2_;
mat1_.copyTo(mat2_);
cv::Mat mat3_(height, width, CV_8UC3);
cv::cvtColor(mat2_, mat3_, CV_BGR2XYZ);
assert(mat3.step == mat3_.step);
for (int y = 0; y < mat3.rows; y++) {
const fbc::uchar* p = mat3.ptr(y);
const uchar* p_ = mat3_.ptr(y);
for (int x = 0; x < mat3.step; x++) {
assert(p[x] == p_[x]);
}
}
// float
cv::Mat matf;
mat.convertTo(matf, CV_32FC3);
fbc::Mat_ mat4(height, width, matf.data);
fbc::Mat_ mat5(mat4);
fbc::Mat_ mat6(height, width);
fbc::cvtColor(mat5, mat6, fbc::CV_BGR2XYZ);
cv::Mat mat4_(height, width, CV_32FC3, matf.data);
cv::Mat mat5_;
mat4_.copyTo(mat5_);
cv::Mat mat6_(height, width, CV_32FC3);
cv::cvtColor(mat5_, mat6_, CV_BGR2XYZ);
assert(mat6.step == mat6_.step);
for (int y = 0; y < mat6.rows; y++) {
const fbc::uchar* p = mat6.ptr(y);
const uchar* p_ = mat6_.ptr(y);
for (int x = 0; x < mat6.step; x++) {
assert(p[x] == p_[x]);
}
}
return 0;
}
int test_cvtColor_XYZ2RGB()
{
cv::Mat mat = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
if (!mat.data) {
std::cout << "read image fail" << std::endl;
return -1;
}
cv::cvtColor(mat, mat, CV_BGR2XYZ);
int width = mat.cols;
int height = mat.rows;
// uchar
fbc::Mat_ mat1(height, width, mat.data);
fbc::Mat_ mat2(mat1);
fbc::Mat_ mat3(height, width);
fbc::cvtColor(mat2, mat3, fbc::CV_XYZ2BGR);
cv::Mat mat1_(height, width, CV_8UC3, mat.data);
cv::Mat mat2_;
mat1_.copyTo(mat2_);
cv::Mat mat3_(height, width, CV_8UC3);
cv::cvtColor(mat2_, mat3_, CV_XYZ2BGR);
assert(mat3.step == mat3_.step);
for (int y = 0; y < mat3.rows; y++) {
const fbc::uchar* p = mat3.ptr(y);
const uchar* p_ = mat3_.ptr(y);
for (int x = 0; x < mat3.step; x++) {
assert(p[x] == p_[x]);
}
}
// float
cv::Mat matf;
mat.convertTo(matf, CV_32FC3);
fbc::Mat_ mat4(height, width, matf.data);
fbc::Mat_ mat5(mat4);
fbc::Mat_ mat6(height, width);
fbc::cvtColor(mat5, mat6, fbc::CV_XYZ2BGR);
cv::Mat mat4_(height, width, CV_32FC3, matf.data);
cv::Mat mat5_;
mat4_.copyTo(mat5_);
cv::Mat mat6_(height, width, CV_32FC3);
cv::cvtColor(mat5_, mat6_, CV_XYZ2BGR);
assert(mat6.step == mat6_.step);
for (int y = 0; y < mat6.rows; y++) {
const fbc::uchar* p = mat6.ptr(y);
const uchar* p_ = mat6_.ptr(y);
for (int x = 0; x < mat6.step; x++) {
assert(p[x] == p_[x]);
}
}
return 0;
}
int test_cvtColor_RGB2HSV()
{
cv::Mat mat = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
if (!mat.data) {
std::cout << "read image fail" << std::endl;
return -1;
}
int code[] = { fbc::CV_BGR2HSV, fbc::CV_BGR2HLS };
for (int i = 0; i < 2; i++) {
int width = mat.cols;
int height = mat.rows;
// uchar
fbc::Mat_ mat1(height, width, mat.data);
fbc::Mat_ mat2(mat1);
fbc::Mat_ mat3(height, width);
fbc::cvtColor(mat2, mat3, code[i]);
cv::Mat mat1_(height, width, CV_8UC3, mat.data);
cv::Mat mat2_;
mat1_.copyTo(mat2_);
cv::Mat mat3_(height, width, CV_8UC3);
cv::cvtColor(mat2_, mat3_, code[i]);
assert(mat3.step == mat3_.step);
for (int y = 0; y < mat3.rows; y++) {
const fbc::uchar* p = mat3.ptr(y);
const uchar* p_ = mat3_.ptr(y);
for (int x = 0; x < mat3.step; x++) {
assert(p[x] == p_[x]);
}
}
// float
cv::Mat matf;
mat.convertTo(matf, CV_32FC3);
fbc::Mat_ mat4(height, width, matf.data);
fbc::Mat_ mat5(mat4);
fbc::Mat_ mat6(height, width);
fbc::cvtColor(mat5, mat6, code[i]);
cv::Mat mat4_(height, width, CV_32FC3, matf.data);
cv::Mat mat5_;
mat4_.copyTo(mat5_);
cv::Mat mat6_(height, width, CV_32FC3);
cv::cvtColor(mat5_, mat6_, code[i]);
assert(mat6.step == mat6_.step);
for (int y = 0; y < mat6.rows; y++) {
const fbc::uchar* p = mat6.ptr(y);
const uchar* p_ = mat6_.ptr(y);
for (int x = 0; x < mat6.step; x++) {
assert(p[x] == p_[x]);
}
}
}
return 0;
}
int test_cvtColor_HSV2RGB()
{
cv::Mat mat = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
if (!mat.data) {
std::cout << "read image fail" << std::endl;
return -1;
}
int code[] = { fbc::CV_HSV2BGR, fbc::CV_HLS2BGR };
int code1[] = { fbc::CV_BGR2HSV, fbc::CV_BGR2HLS };
for (int i = 0; i < 2; i++) {
cv::cvtColor(mat, mat, code1[i]);
int width = mat.cols;
int height = mat.rows;
// uchar
fbc::Mat_ mat1(height, width, mat.data);
fbc::Mat_ mat2(mat1);
fbc::Mat_ mat3(height, width);
fbc::cvtColor(mat2, mat3, code[i]);
cv::Mat mat1_(height, width, CV_8UC3, mat.data);
cv::Mat mat2_;
mat1_.copyTo(mat2_);
cv::Mat mat3_(height, width, CV_8UC3);
cv::cvtColor(mat2_, mat3_, code[i]);
assert(mat3.step == mat3_.step);
for (int y = 0; y < mat3.rows; y++) {
const fbc::uchar* p = mat3.ptr(y);
const uchar* p_ = mat3_.ptr(y);
for (int x = 0; x < mat3.step; x++) {
assert(p[x] == p_[x]);
}
}
// float
cv::Mat matf;
mat.convertTo(matf, CV_32FC3);
fbc::Mat_ mat4(height, width, matf.data);
fbc::Mat_ mat5(mat4);
fbc::Mat_ mat6(height, width);
fbc::cvtColor(mat5, mat6, code[i]);
cv::Mat mat4_(height, width, CV_32FC3, matf.data);
cv::Mat mat5_;
mat4_.copyTo(mat5_);
cv::Mat mat6_(height, width, CV_32FC3);
cv::cvtColor(mat5_, mat6_, code[i]);
assert(mat6.step == mat6_.step);
for (int y = 0; y < mat6.rows; y++) {
const fbc::uchar* p = mat6.ptr(y);
const uchar* p_ = mat6_.ptr(y);
for (int x = 0; x < mat6.step; x++) {
assert(p[x] == p_[x]);
}
}
}
return 0;
}
int test_cvtColor_RGB2Lab()
{
cv::Mat mat = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
if (!mat.data) {
std::cout << "read image fail" << std::endl;
return -1;
}
int code[] = { fbc::CV_BGR2Lab, fbc::CV_BGR2Luv };
for (int i = 0; i < 2; i++) {
int width = mat.cols;
int height = mat.rows;
// uchar
fbc::Mat_ mat1(height, width, mat.data);
fbc::Mat_ mat2(mat1);
fbc::Mat_ mat3(height, width);
fbc::cvtColor(mat2, mat3, code[i]);
cv::Mat mat1_(height, width, CV_8UC3, mat.data);
cv::Mat mat2_;
mat1_.copyTo(mat2_);
cv::Mat mat3_(height, width, CV_8UC3);
cv::cvtColor(mat2_, mat3_, code[i]);
assert(mat3.step == mat3_.step);
for (int y = 0; y < mat3.rows; y++) {
const fbc::uchar* p = mat3.ptr(y);
const uchar* p_ = mat3_.ptr(y);
for (int x = 0; x < mat3.step; x++) {
assert(p[x] == p_[x]);
}
}
// float
cv::Mat matf;
mat.convertTo(matf, CV_32FC3);
fbc::Mat_ mat4(height, width, matf.data);
fbc::Mat_ mat5(mat4);
fbc::Mat_ mat6(height, width);
fbc::cvtColor(mat5, mat6, code[i]);
cv::Mat mat4_(height, width, CV_32FC3, matf.data);
cv::Mat mat5_;
mat4_.copyTo(mat5_);
cv::Mat mat6_(height, width, CV_32FC3);
cv::cvtColor(mat5_, mat6_, code[i]);
assert(mat6.step == mat6_.step);
for (int y = 0; y < mat6.rows; y++) {
const fbc::uchar* p = mat6.ptr(y);
const uchar* p_ = mat6_.ptr(y);
for (int x = 0; x < mat6.step; x++) {
assert(p[x] == p_[x]);
}
}
}
}
int test_cvtColor_Lab2RGB()
{
cv::Mat mat = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
if (!mat.data) {
std::cout << "read image fail" << std::endl;
return -1;
}
int code[] = { fbc::CV_Lab2BGR, fbc::CV_Luv2BGR };
int code1[] = { fbc::CV_BGR2Lab, fbc::CV_BGR2Luv };
for (int i = 0; i < 2; i++) {
cv::cvtColor(mat, mat, code1[i]);
int width = mat.cols;
int height = mat.rows;
// uchar
fbc::Mat_ mat1(height, width, mat.data);
fbc::Mat_ mat2(mat1);
fbc::Mat_ mat3(height, width);
fbc::cvtColor(mat2, mat3, code[i]);
cv::Mat mat1_(height, width, CV_8UC3, mat.data);
cv::Mat mat2_;
mat1_.copyTo(mat2_);
cv::Mat mat3_(height, width, CV_8UC3);
cv::cvtColor(mat2_, mat3_, code[i]);
assert(mat3.step == mat3_.step);
for (int y = 0; y < mat3.rows; y++) {
const fbc::uchar* p = mat3.ptr(y);
const uchar* p_ = mat3_.ptr(y);
for (int x = 0; x < mat3.step; x++) {
assert(p[x] == p_[x]);
}
}
// float
cv::Mat matf;
mat.convertTo(matf, CV_32FC3);
fbc::Mat_ mat4(height, width, matf.data);
fbc::Mat_ mat5(mat4);
fbc::Mat_ mat6(height, width);
fbc::cvtColor(mat5, mat6, code[i]);
cv::Mat mat4_(height, width, CV_32FC3, matf.data);
cv::Mat mat5_;
mat4_.copyTo(mat5_);
cv::Mat mat6_(height, width, CV_32FC3);
cv::cvtColor(mat5_, mat6_, code[i]);
assert(mat6.step == mat6_.step);
for (int y = 0; y < mat6.rows; y++) {
const fbc::uchar* p = mat6.ptr(y);
const uchar* p_ = mat6_.ptr(y);
for (int x = 0; x < mat6.step; x++) {
assert(p[x] == p_[x]);
}
}
}
return 0;
}
int test_cvtColor_YUV2BGR()
{
cv::Mat mat = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
if (!mat.data) {
std::cout << "read image fail" << std::endl;
return -1;
}
cv::cvtColor(mat, mat, CV_BGR2YUV_I420);
int width = mat.cols;
int height = mat.rows;
int newHeight = height * 2 / 3;
// uchar
fbc::Mat_ mat1(height, width, mat.data);
fbc::Mat_ mat2(mat1);
fbc::Mat_ mat3(newHeight, width);
fbc::cvtColor(mat2, mat3, fbc::CV_YUV2BGR_I420);
cv::Mat mat1_(height, width, CV_8UC1, mat.data);
cv::Mat mat2_;
mat1_.copyTo(mat2_);
cv::Mat mat3_(newHeight, width, CV_8UC3);
cv::cvtColor(mat2_, mat3_, CV_YUV2BGR_I420);
assert(mat3.step == mat3_.step);
for (int y = 0; y < mat3.rows; y++) {
const fbc::uchar* p = mat3.ptr(y);
const uchar* p_ = mat3_.ptr(y);
for (int x = 0; x < mat3.step; x++) {
assert(p[x] == p_[x]);
}
}
return 0;
}
int test_cvtColor_BGR2YUV()
{
cv::Mat mat = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
if (!mat.data) {
std::cout << "read image fail" << std::endl;
return -1;
}
int width = mat.cols;
int height = mat.rows;
int newHeight = height / 2 * 3;
// uchar
fbc::Mat_ mat1(height, width, mat.data);
fbc::Mat_ mat2(mat1);
fbc::Mat_ mat3(newHeight, width);
fbc::cvtColor(mat2, mat3, fbc::CV_BGR2YUV_YV12);
cv::Mat mat1_(height, width, CV_8UC3, mat.data);
cv::Mat mat2_;
mat1_.copyTo(mat2_);
cv::Mat mat3_(newHeight, width, CV_8UC1);
cv::cvtColor(mat2_, mat3_, CV_BGR2YUV_YV12);
assert(mat3.step == mat3_.step);
for (int y = 0; y < mat3.rows; y++) {
const fbc::uchar* p = mat3.ptr(y);
const uchar* p_ = mat3_.ptr(y);
for (int x = 0; x < mat3.step; x++) {
assert(p[x] == p_[x]);
}
}
return 0;
}
int test_cvtColor_YUV2Gray()
{
cv::Mat mat = cv::imread("E:/GitCode/OpenCV_Test/test_images/lena.png", 1);
if (!mat.data) {
std::cout << "read image fail" << std::endl;
return -1;
}
cv::cvtColor(mat, mat, CV_BGRA2YUV_I420);
int width = mat.cols;
int height = mat.rows;
int newHeight = height * 2 / 3;
// uchar
fbc::Mat_ mat1(height, width, mat.data);
fbc::Mat_ mat2(mat1);
fbc::Mat_ mat3(newHeight, width);
fbc::cvtColor(mat2, mat3, fbc::CV_YUV2GRAY_420);
cv::Mat mat1_(height, width, CV_8UC1, mat.data);
cv::Mat mat2_;
mat1_.copyTo(mat2_);
cv::Mat mat3_(newHeight, width, CV_8UC1);
cv::cvtColor(mat2_, mat3_, CV_YUV2GRAY_420);
assert(mat3.step == mat3_.step);
for (int y = 0; y < mat3.rows; y++) {
const fbc::uchar* p = mat3.ptr(y);
const uchar* p_ = mat3_.ptr(y);
for (int x = 0; x < mat3.step; x++) {
assert(p[x] == p_[x]);
}
}
return 0;
}