数据倾斜的危害
数据倾斜的原因
排查数据倾斜
【数据源文件】
根据Spark UI查看metrics,input 以及shuffle read 两个metrics判断task的min跟max是否差异较大,如果差异非常大,则存在数据源倾斜。input size统计是从外部数据源读入的大小
【计算过程】
根据Spark UI,查看该task的input或者shuffle reader的Summary Metrics里面min和max值,可以定位到task所属的stage,通过stage 描述可以定位到所属的代码行或者根据log一般会报是在哪一行代码,导致了OOM异常或者看log,看看是执行到了第几个stage。哪一个stage生成的task特别慢,就能够通过stage定位到你的代码,到底哪里发生了数据倾斜。
适用场景:
如果Hive表中的数据很不均匀,而且业务场景需要频繁使用Spark对Hive表执行某个分析操作,比较适合使用这种技术方案。将数据倾斜提前到上游的Hive ETL,每天仅执行一次,只有那一次是比较慢的,而之后每次Java调用Spark作业时,执行速度都会很快,能够提供更好的用户体验。
实现思路:
直接在生成hive表的hive etl中对数据进行聚合。比如按key来分组,将key对应的所有的values全部用一种特殊的格式拼接到一个字符串里面去,比如“key=sessionid, value: action_seq=1|user_id=1|search_keyword=火锅|category_id=001;action_seq=2|user_id=1|search_key
word=涮肉|category_id=001”。
对key进行group,在spark中,拿到key=sessionid,values< Iterable>。hive etl中,直接对key进行了聚合。那么也就意味着,每个key就只对应一条数据。在spark中,就不需要再去执行groupByKey+map这种操作了,就不需要执行shffule操作了,也就根本不可能导致数据倾斜。
聚合源数据方案第二种做法是,如果没有办法对每个key聚合出来一条数据。对每个key对应的数据,10万条。有好几个粒度,比如10万条里面包含了几个城市、几天、几个地区的数据,现在放粗粒度。直接就按照城市粒度,做一下聚合,几个城市,几天、几个地区粒度的数据,都给聚合起来。比如说:
city_id date area_id
select … from … group by city_id
尽量去聚合,减少每个key对应的数量,也许聚合到比较粗的粒度之后,原先有10万数据量的key,现在只有1万数据量。减轻数据倾斜的现象和问题。
适用场景:
如果发现导致倾斜的key就少数几个,而且对计算本身的影响并不大的话,可使用这种方案。
实现思路:
在Spark SQL中可以使用where子句过滤掉这些key或者在Spark Core中对RDD执行filter算子过滤掉这些key。如果需要每次作业执行时,动态判定哪些key的数据量最多然后再进行过滤,那么可以使用sample算子对RDD进行采样,然后计算出每个key的数量,取数据量最多的key过滤掉即可。
对所有的shuffle算子,如groupByKey、countByKey、reduceByKey。在调用的时候,传入进去一个参数。那个数字,就代表了那个shuffle操作的reduce端的并行度。增加reduce task的数量,让每个reduce task分配到更少的数据量。这样的话也许就可以缓解甚至是基本解决掉数据倾斜的问题。
适用场景:对于groupByKey、reduceByKey造成的数据倾斜,有比较好的效果。
实现思路:
第一轮局部聚合,对key进行打散,将原先一样的key,变成不一样的key,相当于是将每个key分为多组,先针对多个组,进行key的局部聚合。第二轮全局聚合,再去除掉每个key的前缀,然后对所有的key进行全局的聚合。
// 第一步,给RDD中的每个key都打上一个随机前缀。
JavaPairRDD<String, Long> randomPrefixRdd = rdd.mapToPair(
new PairFunction<Tuple2<Long,Long>, String, Long>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<String, Long> call(Tuple2<Long, Long> tuple)
throws Exception {
Random random = new Random();
int prefix = random.nextInt(10);
return new Tuple2<String, Long>(prefix + "_" + tuple._1, tuple._2);
}
});
// 第二步,对打上随机前缀的key进行局部聚合。
JavaPairRDD<String, Long> localAggrRdd = randomPrefixRdd.reduceByKey(
new Function2<Long, Long, Long>() {
private static final long serialVersionUID = 1L;
@Override
public Long call(Long v1, Long v2) throws Exception {
return v1 + v2;
}
});
// 第三步,去除RDD中每个key的随机前缀。
JavaPairRDD<Long, Long> removedRandomPrefixRdd = localAggrRdd.mapToPair(
new PairFunction<Tuple2<String,Long>, Long, Long>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<Long, Long> call(Tuple2<String, Long> tuple)
throws Exception {
long originalKey = Long.valueOf(tuple._1.split("_")[1]);
return new Tuple2<Long, Long>(originalKey, tuple._2);
}
});
// 第四步,对去除了随机前缀的RDD进行全局聚合。
JavaPairRDD<Long, Long> globalAggrRdd = removedRandomPrefixRdd.reduceByKey(
new Function2<Long, Long, Long>() {
private static final long serialVersionUID = 1L;
@Override
public Long call(Long v1, Long v2) throws Exception {
return v1 + v2;
}
});
适用场景:
如果两个RDD要进行join,其中一个RDD是比较小的。比如一个RDD是100万数据,一个RDD是1万数据。(一个RDD是1亿数据,一个RDD是100万数据)。
实现思路:
不使用join算子进行连接操作,而使用Broadcast变量与map类算子实现join操作,进而完全规避掉shuffle类的操作,彻底避免数据倾斜的发生和出现。将较小RDD中的数据直接通过collect算子拉取到Driver端的内存中来,然后对其创建一个Broadcast变量;接着对另外一个RDD执行map类算子,在算子函数内,从Broadcast变量中获取较小RDD的全量数据,与当前RDD的每一条数据按照连接key进行比对,如果连接key相同的话,那么就将两个RDD的数据用你需要的方式连接起来。
普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个RDD是比较小的,采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。
// 首先将数据量比较小的RDD的数据,collect到Driver中来。
List<Tuple2<Long, Row>> rdd1Data = rdd1.collect()
// 然后使用Spark的广播功能,将小RDD的数据转换成广播变量,这样每个Executor就只有一份RDD的数据。
// 可以尽可能节省内存空间,并且减少网络传输性能开销。
final Broadcast<List<Tuple2<Long, Row>>> rdd1DataBroadcast = sc.broadcast(rdd1Data);
// 对另外一个RDD执行map类操作,而不再是join类操作。
JavaPairRDD<String, Tuple2<String, Row>> joinedRdd = rdd2.mapToPair(
new PairFunction<Tuple2<Long,String>, String, Tuple2<String, Row>>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<String, Tuple2<String, Row>> call(Tuple2<Long, String> tuple)
throws Exception {
// 在算子函数中,通过广播变量,获取到本地Executor中的rdd1数据。
List<Tuple2<Long, Row>> rdd1Data = rdd1DataBroadcast.value();
// 可以将rdd1的数据转换为一个Map,便于后面进行join操作。
Map<Long, Row> rdd1DataMap = new HashMap<Long, Row>();
for(Tuple2<Long, Row> data : rdd1Data) {
rdd1DataMap.put(data._1, data._2);
}
// 获取当前RDD数据的key以及value。
String key = tuple._1;
String value = tuple._2;
// 从rdd1数据Map中,根据key获取到可以join到的数据。
Row rdd1Value = rdd1DataMap.get(key);
return new Tuple2<String, String>(key, new Tuple2<String, Row>(value, rdd1Value));
}
});
// 注意该做法仅仅适用于rdd1中的key没有重复,全部是唯一的场景。
// 如果rdd1中有多个相同的key,那么就得用flatMap类的操作,在进行join的时候不能用map,而是得遍历rdd1所有数据进行join。
// rdd2中每条数据都可能会返回多条join后的数据。
不适合的情况:两个RDD都比较大,那么这个时候,你去将其中一个RDD做成broadcast,很可能导致内存不足。最终导致内存溢出,程序挂掉。
适用场景:
进行join的时候,如果数据量都比较大,如果出现数据倾斜,是因为其中某一个RDD中的少数几个key的数据量过大,而另一个RDD中的所有key都分布比较均匀,采用该解决方案。
实现思路:
对于join导致的数据倾斜,如果只是某几个key导致了倾斜,可以将少数几个key分拆成独立RDD,并附加随机前缀打散成n份去进行join,此时这几个key对应的数据就不会集中在少数几个task上,而是分散到多个task进行join了。
对包含少数几个数据量过大的key的那个RDD,通过sample算子采样出一份样本来,然后统计一下每个key的数量,确定数据量最大的几个key。 然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个key都打上n以内的随机数作为前缀,而不会导致倾斜的大部分key形成另外一个RDD。 接着将需要join的另一个RDD,也过滤出来那几个倾斜key对应的数据并形成一个单独的RDD,将每条数据膨胀成n条数据,这n条数据都按顺序附加一个0~n的前缀,不会导致倾斜的大部分key也形成另外一个RDD。 再将附加了随机前缀的独立RDD与另一个膨胀n倍的独立RDD进行join,此时就可以将原先相同的key打散成n份,分散到多个task中去进行join了。 而另外两个普通的RDD就照常join即可。 最后将两次join的结果使用union算子合并起来即可,就是最终的join结果。
对于join导致的数据倾斜,如果只是某几个key导致了倾斜,采用该方式可以用最有效的方式打散key进行join。而且只需要针对少数倾斜key对应的数据进行扩容n倍,不需要对全量数据进行扩容。避免了占用过多内存。如果导致倾斜的key特别多的话,比如成千上万个key都导致数据倾斜,那么这种方式也不适合。
sample(withReplacement : scala.Boolean, fraction : scala.Double,seed scala.Long)
1、withReplacement:元素可以多次抽样(在抽样时替换)
2、fraction:期望样本的大小作为RDD大小的一部分,
当withReplacement=false时:选择每个元素的概率;分数一定是[0,1] ;
当withReplacement=true时:选择每个元素的期望次数; 分数必须大于等于0。
3、seed:随机数生成器的种子
实现思路:
将该RDD的每条数据都打上一个n以内的随机前缀。同时对另外一个正常的RDD进行扩容,将每条数据都扩容成n条数据,扩容出来的每条数据都依次打上一个0~n的前缀。 最后将两个处理后的RDD进行join即可。将原先一样的key通过附加随机前缀变成不一样的key,然后就可以将这些处理后的“不同key”分散到多个task中去处理,而不是让一个task处理大量的相同key。
由于处理过程需要扩容RDD,而这一种方案是针对有大量倾斜key的情况,没法将部分key拆分出来进行单独处理,因此只能对整个RDD进行数据扩容,对内存资源要求很高。
// 首先将其中一个key分布相对较为均匀的RDD膨胀100倍。
JavaPairRDD<String, Row> expandedRDD = rdd1.flatMapToPair(
new PairFlatMapFunction<Tuple2<Long,Row>, String, Row>() {
private static final long serialVersionUID = 1L;
@Override
public Iterable<Tuple2<String, Row>> call(Tuple2<Long, Row> tuple)
throws Exception {
List<Tuple2<String, Row>> list = new ArrayList<Tuple2<String, Row>>();
for(int i = 0; i < 100; i++) {
list.add(new Tuple2<String, Row>(0 + "_" + tuple._1, tuple._2));
}
return list;
}
});
// 其次,将另一个有数据倾斜key的RDD,每条数据都打上100以内的随机前缀。
JavaPairRDD<String, String> mappedRDD = rdd2.mapToPair(
new PairFunction<Tuple2<Long,String>, String, String>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<String, String> call(Tuple2<Long, String> tuple)
throws Exception {
Random random = new Random();
int prefix = random.nextInt(100);
return new Tuple2<String, String>(prefix + "_" + tuple._1, tuple._2);
}
});
// 将两个处理后的RDD进行join即可。
JavaPairRDD<String, Tuple2<String, Row>> joinedRDD = mappedRDD.join(expandedRDD);
补充:窄依赖会不会造成数据倾斜?
会。如果上游数据本身分布不均,每个task中处理的数据量不一致,那么还是会造成数据倾斜。但是上游已经数据倾斜了,就已经OOM了,就需要避免OOM,需要增加内存。