AI实战:生成对抗网络 GAN 开源代码汇总

生成对抗网络 GAN 在机器视觉中的应用开源代码汇总

  • CycleGAN and pix2pix in PyTorch

    • star: 12.7 K
    • 地址:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
    • 论文地址:https://arxiv.org/pdf/1703.10593.pdf
    • 示例图
      AI实战:生成对抗网络 GAN 开源代码汇总_第1张图片
      AI实战:生成对抗网络 GAN 开源代码汇总_第2张图片
  • pix2pixHD

    • star: 4.7 K
    • 地址:https://github.com/NVIDIA/pix2pixHD
    • 介绍
      Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translation. It can be used for turning semantic label maps into photo-realistic images or synthesizing portraits from face label maps.
      论文地址:https://arxiv.org/abs/1609.03552
  • iGAN: Interactive Image Generation via Generative Adversarial Networks (基于生成对抗网络的交互式图像生成)

    • star: 3.7 K
    • 地址:https://github.com/junyanz/iGAN
    • 简介
      iGAN (aka. interactive GAN) is the author’s implementation of interactive image generation interface described in: “Generative Visual Manipulation on the Natural Image Manifold”
      Given a few user strokes, our system could produce photo-realistic samples that best satisfy the user edits in real-time. Our system is based on deep generative models such as Generative Adversarial Networks (GAN) and DCGAN.
      论文地址:https://arxiv.org/pdf/1905.01164.pdf
  • SinGAN

    • star: 2.5 K
    • 地址:https://github.com/tamarott/SinGAN
    • 简介
      Official pytorch implementation of the paper: “SinGAN: Learning a Generative Model from a Single Natural Image”
      With SinGAN, you can train a generative model from a single natural image, and then generate random samples form the given image.
  • AnimeGAN

    • star: 2.1 K
    • 地址:https://github.com/TachibanaYoshino/AnimeGAN
    • 简介
      Multimodal UNsupervised Image-to-image Translation
      论文地址:https://arxiv.org/abs/1804.04732
  • MUNIT

    • star: 2.1 K
    • 地址:https://github.com/NVlabs/MUNIT
    • 简介
      论文地址:https://arxiv.org/abs/1804.04732
  • DeblurGAN

    • star: 1.7 K
    • 地址:https://github.com/KupynOrest/DeblurGAN
    • 简介
      Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks.
      论文地址:https://arxiv.org/pdf/1711.07064.pdf

你可能感兴趣的:(人工智能,深度学习,图像识别,GAN,生成对抗网络)