图与景区管理系统

图与景区管理系统

功能简介

序号 功能 实现原理
1 创建景区景点图 文件读写、结构体
2 查询景点信息 边的关系
3 旅游景点导航 链表、深度优先搜索
4 搜索最短路径 Dijkstra算法、最短路径
5 铺设电路规划 Prim算法、最小生成树
0 退出 exit(0)

源代码(Visual Studio 2017下)

数据结构头文件

Graph.h

#ifndef GRAPH_H
#define GRAPH_H

struct Vex
{
    int num;//景点编号
    char name[20];//景点名字
    char desc[1024];//景点介绍
};
struct Edge
{
    int vex1;//边的第一个顶点
    int vex2;//边的第二个顶点
    int weight;//权值
};
struct Graph
{
    int m_aAdjMatrix[20][20];//邻接矩阵
    Vex m_aVexs[20];//顶点信息组数
    int m_nVexNum;//当前图的顶点个数
};
typedef struct Path
{
    int vexs[20];//保存一条路径
    Path *next;//下一条路径
}*PathList;//链表PathList用来保存所有路径

void Init(void);
bool InsertVex(Vex sVex);
bool InsertEdge(Edge sEdge);
Vex GetVex(int nVex);
int FindEdge(int nVex, Edge aEdge[]);
int GetVexnum(void);
void DFS(int nVex, bool isVisited[], int &nIndex, PathList &pList);
void DFSTraverse(int nVex,PathList &pList);
bool TraverseOrNot(int now[], int i);
int FindShortPath(int nVexStart, int nVexEnd, Edge aPath[]);
int FindMinTree(Edge aPath[]);
#endif GRAPH_H

数据结构源文件Graph.cpp


#include"Graph.h"
#include
using namespace std;
Graph graph;
int EdgeNum;
Edge aEdge[100];
int allPath[20][20] = {0};
int PathNum=0;
//bool isVisited[20];
bool TraverseOrNot(int now[], int i)
{
    for (int p = 0; p < PathNum; p++)
    {
        for (int q = 0; q < i; q++)
        {
            if (allPath[p][q] != now[q])
            {
                break;
            }
            if ((allPath[p][q] == now[q] && q == i))
                return true;//曾被访问
        }
    }
    return false;
}


void Init(void)
{
    for (int i = 0; i < 20; i++)
    {
        for (int j = 0; j < 20; j++)
        {
            if (i == j)
                graph.m_aAdjMatrix[i][j] = 0;
            else
                graph.m_aAdjMatrix[i][j] = 0xffff;
        }
    }
    graph.m_nVexNum = 0;
}

bool InsertVex(Vex sVex)
{
    if (graph.m_nVexNum >= 20)
    {//顶点已满
        return false;
    }
    graph.m_aVexs[graph.m_nVexNum++] = sVex;
    return true;
}

bool InsertEdge(Edge sEdge)
{
    if (sEdge.vex1 == sEdge.vex2)
        return false;
    graph.m_aAdjMatrix[sEdge.vex1][sEdge.vex2] = sEdge.weight;
    graph.m_aAdjMatrix[sEdge.vex2][sEdge.vex1] = sEdge.weight;
    return true;
}

Vex GetVex(int nVex)
{
    return graph.m_aVexs[nVex];
}
/*
int FindEdge(int nVex, Edge aEdge[])
{
    for (int i = 0; i < EdgeNum; i++)
    {
        if (aEdge[i].vex1 == nVex)
        {
            cout << graph.m_aVexs[aEdge[i].vex1].name << "->" << graph.m_aVexs[aEdge[i].vex2].name << " " << aEdge[i].weight << endl;
        }
        if(aEdge[i].vex2 == nVex)
            cout << graph.m_aVexs[aEdge[i].vex2].name << "->" << graph.m_aVexs[aEdge[i].vex1].name << " " << aEdge[i].weight << endl;
    }
    return true;
}
*/

int FindEdge(int nVex, Edge aEdge[])
{
    int k = 0;
    for (int i = 0; i < graph.m_nVexNum; i++)
    {
        if (graph.m_aAdjMatrix[i][nVex] > 0 && graph.m_aAdjMatrix[i][nVex] < 0xffff)
        {
            aEdge[k].vex1 = nVex;
            aEdge[k].vex2 = i;
            aEdge[k].weight = graph.m_aAdjMatrix[i][nVex];
            k++;
        }
    }
    return k;
}

int GetVexnum(void)
{
    return graph.m_nVexNum;
}
/*
//输出一行的深度优先搜索
void DFS(int nVex, bool isVisited[], int &nIndex, PathList &pList)
{//nIndex记录遍历的深度
    if (nIndex == graph.m_nVexNum - 1)
        pList->next = NULL;
    isVisited[nVex] = true;
    pList->vexs[nIndex++] = nVex;
    for (int i = 0; i < graph.m_nVexNum; i++)
    {
        if (graph.m_aAdjMatrix[nVex][i] > 0 && graph.m_aAdjMatrix[nVex][i] < 0xffff && !isVisited[i]&&pList->next)
        {
            DFS(i, isVisited, nIndex, pList);//递归调用DFS
            isVisited[i] = false;
            nIndex--;
        }
    }
}
*/
void DFS(int nVex, bool isVisited[], int &nIndex, PathList &pList)
{//nIndex记录遍历的深度


    //if (nIndex == graph.m_nVexNum -1 && TraverseOrNot(pList->vexs, graph.m_nVexNum))
    //{
    //  nIndex--;
    //}

    isVisited[nVex] = true;
    pList->vexs[nIndex++] = nVex;
    //判断是否所有的顶点都已被访问过
    int nVexNum = 0;
    for (int i = 0; i < graph.m_nVexNum; i++)
    {
        if (isVisited[i])
            nVexNum++;
    }
    if (nIndex == graph.m_nVexNum )
    {
        pList ->next= (PathList)malloc(sizeof(Path));
        for (int i = 0; i < graph.m_nVexNum; i++)
        {
            pList->next->vexs[i] = pList->vexs[i];
        }
        pList = pList->next;
        pList->next = NULL;
    }

    else 
    {
        for (int i = 0; i < graph.m_nVexNum; i++)
        {
            if (graph.m_aAdjMatrix[nVex][i] > 0 && graph.m_aAdjMatrix[nVex][i] < 0xffff && !isVisited[i])
            {
                DFS(i, isVisited, nIndex, pList);//递归调用DFS
                isVisited[i] = false;
                nIndex--;
            }
        }
    }

}

void DFSTraverse(int nVex, PathList &pList)
{
    int nIndex = 0;
    bool isVisited[20] = { false };
    DFS(nVex, isVisited, nIndex, pList);
}

int FindShortPath(int nVexStart, int nVexEnd, Edge aPath[])
{
    int nShortPath[20][20];//保存最短路径
    int nShortDistance[20];//保存最短距离
    bool isVisited[20];//判断某顶点是否已加入到最短路径
    int v;

    //初始化
    for (v = 0; v < graph.m_nVexNum; v++)
    {
        isVisited[v] = false;
        if (graph.m_aAdjMatrix[nVexStart][v])
        {
            //初始化该顶点到其他顶点的最短距离,默认为两顶点间的距离
            nShortDistance[v] = graph.m_aAdjMatrix[nVexStart][v];
        }
        else
        {
            //如果两顶点v和nVexStart不相连,则最短距离为最大值
            nShortDistance[v] = 0xffff;
        }
        nShortPath[v][0] = nVexStart;//起始点为nVexStart
        for (int w = 1; w < graph.m_nVexNum; w++)
        {
            nShortPath[v][w] = -1;//初始化最短路径
        }
    }
    //初始化,nVexStart顶点加入到集合中
    isVisited[nVexStart] = true;
    int min;
    for (int i = 1; i < graph.m_nVexNum; i++)
    {
        min = 0xffff;
        bool bAdd = false;//判断是否还有顶点可以加入集合
        for (int w = 0; w < graph.m_nVexNum; w++)
        {
            if (!isVisited[w])
            {
                if (nShortDistance[w] < min)
                {
                    v = w;//顶点离nVexStart最近
                    min = nShortDistance[w];//最短距离为min
                    bAdd = true;
                }
            }
        }
        //如果没有顶点可加入集合,则跳出循环
        if (!bAdd)
        {
            break;
        }
        isVisited[v] = true;//将w顶点加入到集合
        nShortPath[v][i] = v;
        for (int w = 0; w < graph.m_nVexNum; w++)
        {
            if (!isVisited[w] && (min + graph.m_aAdjMatrix[v][w] < nShortDistance[w]) /*&& (min + graph.m_aAdjMatrix[v][w]) < 0xffff*/)
            {
                //更新当前最短路径及距离
                nShortDistance[w] = min + graph.m_aAdjMatrix[v][w];
                for (int i = 0; i < graph.m_nVexNum; i++)
                {
                    //如果通过w到达顶点i的距离比较短,则将w的最短路径复制给i
                    nShortPath[w][i] = nShortPath[v][i];
                }
            }
        }
        for (int p = 0; p < graph.m_nVexNum; p++)
        {
            for (int j = 0; j < graph.m_nVexNum; j++)
            {
                cout< 0)
    //  {
    //      aPath[i].weight = nShortDistance[onlypath[i + 1]] - nShortDistance[onlypath[i]];
            
    //  }
    }
    return nNum;
}
/*
int FindMinTree(Edge aPath[])
{
    int before,after;//before为前一个已访问的点,after为下一个将要访问的点
    int lowcost[20];//保存着未被访问即(V-U)中编号为k的顶点到U中所有顶点的最小权值
    int closest[20];//保存着U中到V-U中编号为K的顶点权值最小的编号
    int used[20];//保存某点是否已经被访问
    int min;

    for (int i = 0; i < graph.m_nVexNum; i++)
    {
        lowcost[i] = graph.m_aAdjMatrix[0][i];//到i点的最小距离即为a点到i点的距离
        closest[i] = 0;//到i点最小距离的点是a点
        used[i] = 0;//所有点都未被访问
    }
    used[0] = 1;//a点已被访问
    before = 0;
    after = 0;
    for (int i = 0; i < graph.m_nVexNum - 1; i++)
    {

        min = 0xffff;

        for (int k = 1; k < graph.m_nVexNum; k++)
        {
            if (used[k] == 0 && lowcost[k] < min)
            {
                min = lowcost[k];
                after = k;
            }
        }
        cout << "before = " << before << "\tafter = " << after << endl;
        used[after] = 1;//j点已加入U集合
        aPath[i].vex1 = before;
        aPath[i].vex2 = after;
        aPath[i].weight = graph.m_aAdjMatrix[before][after];
        for (int j = 0; j < graph.m_nVexNum; j++)
        {
            for (int k = 0; k < graph.m_nVexNum; k++)
            {
                if ((used[j]==1)&&(used[k] == 0) && (graph.m_aAdjMatrix[j][k] < lowcost[k]))
                {
                    lowcost[k] = graph.m_aAdjMatrix[j][k];
                    closest[k] = after;
                    before = j;
                }
            }
        }
    }

    for (int i = 0; i < graph.m_nVexNum - 1; i++)
    {
        cout << aPath[i].vex1 << " -> " << aPath[i].vex2 << "\t" << aPath[i].weight << endl;
    }
    int sum = 0;
    for (int i = 0; i < graph.m_nVexNum - 1; i++)
    {
        cout << graph.m_aVexs[aPath[i].vex1].name << " - " << graph.m_aVexs[aPath[i].vex2].name << "\t" << aPath[i].weight << endl;
        sum += aPath[i].weight;
    }
    cout << endl << endl << "pop stack!" << endl;

    return 0;
}
*/

int FindMinTree(Edge aPath[])
{
    int before, after;//before为前一个已访问的点,after为下一个将要访问的点
    int used[20];//保存某点是否已经被访问
    int min;

    for (int i = 0; i < graph.m_nVexNum; i++)
    {
        used[i] = 0;//所有点都未被访问
    }
    used[0] = 1;//a点已被访问
    before = 0;
    after = 0;
    for (int i = 0; i < graph.m_nVexNum - 1; i++)
    {
        min = 0xffff;
        for (int j = 0; j < graph.m_nVexNum; j++)
        {
            for (int k = 0; k < graph.m_nVexNum; k++)
            {
                if ((used[j] == 1) && (used[k] == 0) && (graph.m_aAdjMatrix[j][k] < min))
                {
                    min = graph.m_aAdjMatrix[j][k];
                    before = j;
                    after = k;
                }
            }
        }
//      cout << i << "." << "before = " << before << "\tafter = " << after << endl;
        used[after] = 1;//j点已加入U集合
        aPath[i].vex1 = before;
        aPath[i].vex2 = after;
        aPath[i].weight = graph.m_aAdjMatrix[before][after];
    }
    return 0;
}

操作实现头文件Tourism.h

#ifndef TOURISM_H
#define TOURISM_H

void CreateGraph(void);
void GetSpotInfo(void);
void TravelPath(void);
void FindShortPath(void);
void DesignPath(void);
#endif

操作实现源文件Tourism.cpp

#include"Tourism.h"
#include"Graph.h"
#include
using namespace std;
extern Graph graph;
extern int EdgeNum;
extern Edge aEdge[100];

//extern bool isVisited[20];
#pragma warning (disable : 4996)


void CreateGraph(void)
{
    Init();
    FILE *fp = NULL;
    fp = fopen("Vex.txt", "r");
    if (!fp)
    {
        printf("Failed to open the file!");
        exit(-1);
    }
    int num;
    Vex sVex;
    fscanf(fp, "%d", &num);
    cout << "===== 创建景区景点图 =====" << endl;
    cout << "顶点数目:" << num< %d\n", sEdge.vex1, sEdge.vex2, sEdge.weight);
        InsertEdge(sEdge);
        aEdge[EdgeNum++] = sEdge;
    }
    fclose(fp);
    cout << endl << endl;
}


void GetSpotInfo(void)
{
    cout << "===== 查询景点信息 =====" << endl;
    for (int i = 0; i < graph.m_nVexNum; i++)
    {
        cout << graph.m_aVexs[i].num << "-" << graph.m_aVexs[i].name << endl;
    }
    int nVex;
    cout << "输入想要查询的景点编号: ";
    cin >> nVex;
    Vex sVex=GetVex(nVex);
    printf("%s\n%s\n", sVex.name,sVex.desc);
    cout << "----- 周边景区 -----" << endl;
    int k = FindEdge(nVex, aEdge);
    for (int i = 0; i < k; i++)
    {
        cout << graph.m_aVexs[aEdge[i].vex1].name << "->" << graph.m_aVexs[aEdge[i].vex2].name << " " << aEdge[i].weight <<"m"<< endl;
    }
    cout << endl << endl;
}

void TravelPath(void)
{
    PathList pList;
    pList = (Path*)malloc(sizeof(Path));
    PathList PHead;
    PHead = pList;
//  pList->next = (Path*)malloc(sizeof(Path));
    cout << "===== 旅游景点导航 =====" << endl;
    for (int i = 0; i < graph.m_nVexNum; i++)
    {
        cout << graph.m_aVexs[i].num << "-" << graph.m_aVexs[i].name << endl;
    }
    cout << "请输入起始点编号:";
    int nVex;
    cin >> nVex;
    DFSTraverse(nVex, pList);
    cout << "导航路线为: " << endl;
//  cout << "路线1 : ";
//  cout<next)
    {
        Vex sVex = GetVex(pList->vexs[0]);
        cout << "路线" << i++ << ":" << sVex.name;
        for (int j = 1; j %s", graph.m_aVexs[pList->vexs[j]].name);
//          sVex = GetVex(pList->vexs[j]);
//          cout << " -> " << sVex.name;
        }
        cout << endl;
        Path *temp = pList;
        pList = pList->next;
        free(temp);
    }
    free(pList);
    pList = NULL;
    PHead = NULL;
    cout << endl<next);
}

void FindShortPath(void)
{
    cout << "===== 搜索最短路径 =====" << endl;
    for (int i = 0; i < graph.m_nVexNum; i++)
    {
        cout << graph.m_aVexs[i].num << "-" << graph.m_aVexs[i].name << endl;
    }
    int nVexStart;
    int nVexEnd;
    cout << "请输入起点的编号: ";
    cin >> nVexStart;
    cout << "请输入终点的编号: ";
    cin >> nVexEnd;
    Edge aPath[20];
    int nNum=FindShortPath(nVexStart, nVexEnd, aPath);
    Vex sVex = GetVex(aPath[0].vex1);
    int nLength = 0;
    cout << "最短路线为: ";
    cout << graph.m_aVexs[nVexStart].name;
    for (int i = 0; i < nNum-1; i++)
    {
        sVex = GetVex(aPath[i].vex2);
        cout << "->" << sVex.name;
        nLength += aPath[i].weight;
    }
    cout << endl;
    cout << "最短距离为: " << nLength << endl;
    cout << endl << endl;
}

void DesignPath(void)
{
    cout << "===== 铺设电路规划 =====" << endl;
    cout << "在以下两个景点之间铺设电路:" << endl;
    Edge aPath[20];
    FindMinTree(aPath);
    int sum=0;
    for (int i = 0; i < graph.m_nVexNum - 1; i++)
    {
        cout << graph.m_aVexs[aPath[i].vex1].name << " - " << graph.m_aVexs[aPath[i].vex2].name << "\t" << aPath[i].weight << endl;
        sum += aPath[i].weight;
    }
    cout << "铺设电路的总长度为:" << sum;
    cout << endl << endl << endl;
}

主函数源文件Main.cpp

#include
#include"Tourism.h"
using namespace std;
#pragma warning( disable : 4996)

int main()
{
    while (true)
    {
        //输出界面
        cout << "====景区信息管理系统====" << endl;
        cout << "1.创建景区景点图" << endl;
        cout << "2.查询景点信息" << endl;
        cout << "3.旅游景点导航" << endl;
        cout << "4.搜索最短路径" << endl;
        cout << "5.铺设电路规划" << endl;
        cout << "0.退出" << endl;
        int choice;
        cout << "请输入操作编号<0~5>: ";
        cin >> choice;
        switch (choice)
        {
        case 1:
        {
            CreateGraph();
            break;
        }
        case 2:
        {
            GetSpotInfo();
            break;
        }
        case 3:
        {
            TravelPath();
            break;
        }
        case 4:
        {
            FindShortPath();
            break;
        }
        case 5:
        {
            DesignPath();
            break;
        }
        case 0:
        {
            cout << "退出系统!" << endl;
            exit(0);
        }
        default:
        {
            cout << "请输入操作编号<0~5>: ";
            break;
        }
        }

    }
    return 0;
}

转载于:https://www.cnblogs.com/sgawscd/p/10888699.html

你可能感兴趣的:(数据结构与算法,c/c++)