- 如何使用Langchain加载AZLyrics网页到可用文档格式
dgay_hua
langchainpython
##技术背景介绍在处理歌词数据时,尤其是从网页上获取歌词文本内容,用于自然语言处理或文本分析是常见的需求。AZLyrics是一个提供歌词的主要平台,为我们提供了大量的歌词数据。如果我们可以将这些网页内容自动加载到结构化的文档格式中,将极大地提升我们处理和分析歌词的效率。##核心原理解析Langchain提供了一种简单的方式来将网页内容转换为可用的文档格式。通过使用其文档加载器(DocumentLo
- 使用Titan Takeoff进行高效的自然语言处理模型推理
scaFHIO
自然语言处理人工智能python
在自然语言处理(NLP)领域,每一家企业都在寻求更高效的模型训练和推理解决方案。TitanML的平台通过训练、压缩和推理优化帮助企业构建和部署更佳、更小、更便宜、更快速的NLP模型。特别是其推理服务器TitanTakeoff,使得在本地硬件上轻松部署大语言模型(LLMs)成为可能。技术背景介绍TitanTakeoff是TitanML提供的一项服务,它允许用户在本地硬件上运行推理工作负载。支持大多数
- 探索Google AI聊天模型的集成和使用
qahaj
人工智能python
随着人工智能的飞速发展,GoogleAI的聊天模型提供了强大的自然语言处理能力,可以应用于多种场景中。本文将为你介绍如何通过GoogleAI和LangChain库来使用这些聊天模型。技术背景介绍GoogleAI提供了一系列强大的聊天模型,这些模型具备不同的功能和参数设置。它们不仅可以通过GoogleAI服务访问,还可以通过GoogleCloudVertexAI以企业级功能使用。在本文中,我们将重点
- 高效快速教你DeepSeek如何进行本地部署并且可视化对话
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3经验分享
科技文章:高效快速教你DeepSeek如何进行本地部署并且可视化对话摘要:随着自然语言处理(NLP)技术的进步,DeepSeek作为一款基于深度学习的语义搜索技术,广泛应用于文本理解、对话系统及信息检索等多个领域。本文将探讨如何高效快速地在本地部署DeepSeek,并结合可视化工具实现对话过程的监控与分析。通过详尽的步骤、案例分析与代码示例,帮助开发者更好地理解和应用DeepSeek技术。同时,本
- 哈尔滨工业大学DeepSeek公开课人工智能:大模型原理 技术与应用-从GPT到DeepSeek|附视频下载方法
你觉得205
人工智能机器学习大数据ai知识图谱python运维
导读INTRODUCTION今天继续哈尔滨工业大学车万翔教授带来了一场主题为“DeepSeek技术前沿与应用”的报告。本报告深入探讨了大语言模型在自然语言处理(NLP)领域的核心地位及其发展历程,从基础概念出发,延伸至语言模型在机器翻译、拼音输入法、语音识别等任务中的关键作用。强调了语言模型不仅辅助其他NLP任务,本身也蕴含大量知识,如地理信息、语义理解和推理能力。随着技术的发展,尤其是trans
- When Large Language Models Meet Speech: A Survey on Integration Approaches
UnknownBody
LLMDailySurveyPaper语言模型人工智能自然语言处理
主要内容研究背景:大语言模型(LLMs)在自然语言处理领域取得显著进展,其与语音的融合具有广泛应用前景,但缺乏相关集成方法的综述。文章将语音与LLMs集成方法分为基于文本、基于潜在表示和基于音频令牌三大类。集成方法基于文本的集成:通过级联集成、LLM重打分和LLM生成式错误纠正等方式,利用文本作为LLMs的输入和输出,处理语音相关任务,但存在信息损失和准确性与多样性平衡的问题。基于潜在表示的集成:
- 大模型学习终极指南:从新手到专家的必经之路,全网最详尽解析,你敢挑战吗?
大模型入门教程
学习人工智能AI大模型大模型学习大模型教程AI大模型
随着人工智能技术的飞速发展,大模型(Large-ScaleModels)已经成为推动自然语言处理(NLP)、计算机视觉(CV)等领域进步的关键因素。本文将为您详细介绍从零开始学习大模型直至成为专家的全过程,包括所需掌握的知识点、学习资源以及实践建议等。无论您是初学者还是有一定基础的专业人士,都能从中获得有价值的指导。一、基础知识准备在开始学习大模型之前,需要先掌握一些基础知识,这些知识将为后续的学
- 大模型Agent 和 RAG 的关系
大数据追光猿
大模型语言模型人工智能学习方法transformer
Agent和RAG(Retrieval-AugmentedGeneration)是两种在自然语言处理(NLP)和人工智能领域中广泛使用的技术,它们在功能、目标和实现方式上既有区别又有联系。以下是它们的关系及其协同作用的详细分析。1.Agent和RAG的定义(1)Agent定义:Agent是一种智能体,能够感知环境并采取行动以完成特定任务。在NLP领域,Agent通常指一个基于大语言模型(LLM)的
- AI大模型训练教程
Small踢倒coffee_氕氘氚
python自学经验分享笔记
1.引言随着人工智能技术的快速发展,大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。训练一个大模型需要大量的计算资源、数据和专业知识。本教程将带你了解如何从零开始训练一个AI大模型。2.准备工作2.1硬件要求GPU:推荐使用NVIDIA的高性能GPU,如A100、V100等。内存:至少64GBRAM。存储:SSD存储,至少1TB。#2.2软件环境操作系统:Lin
- 景联文科技提供高质量文本标注服务,驱动AI技术发展
景联文科技
科技人工智能
文本标注是指在原始文本数据上添加标签的过程,这些标签可以用来指示特定的实体、关系、事件等信息,以帮助计算机理解和处理这些数据。文本标注是自然语言处理(NLP)领域的一个重要环节,它通过为文本的不同部分提供具体的含义和上下文信息,增强机器学习和深度学习模型对文本内容的理解能力。标注类型情感分析情感极性:确定文本表达的情感倾向,如正面、负面或中立。强度评估:衡量情感的强烈程度,从轻微到极端不等。命名实
- 景联文科技:以高质量数据标注推动人工智能领域创新与发展
景联文科技
科技人工智能数据标注
在当今这个由数据驱动的时代,高质量的数据标注对于推动机器学习、自然语言处理(NLP)、计算机视觉等领域的发展具有不可替代的重要性。数据标注过程涉及对原始数据进行加工,通过标注特定对象的特征来生成能够被机器学习模型识别和使用的编码格式,从而使数据更具有意义和可解读性。数据标注的主要类型包括:图像标注:指在图片中标识出目标物体的位置、形状或类别等信息,如自动驾驶技术中的行人、车辆及交通标志的识别。文本
- 端到端的NLP框架(Haystack)
deepdata_cn
NLP自然语言处理人工智能
Haystack是一个端到端的NLP框架,专门用于构建基于文档的问答系统,是实现RAG的理想选择。它提供了数据预处理、文档存储、检索和生成等一系列组件,支持多种语言模型和检索器。提供可视化界面,方便用户进行配置和调试;支持多模态数据,可处理文本、图像等多种类型的数据;具有可扩展性,可根据需求添加自定义组件。2020年在自然语言处理技术快速发展,对高效、易用且灵活的端到端NLP框架需求日益增长的背景
- 客服机器人怎么才能精准的回答用户问题?
玩人工智能的辣条哥
AI面试机器人客服机器人
环境:客服机器人问题描述:客服机器人怎么才能精准的回答用户问题?解决方案:客服机器人要精准回答用户问题,需综合技术、数据和用户体验等多方面因素。以下是关键策略和步骤:1.精准理解用户意图自然语言处理(NLP)技术分词与实体识别:提取关键词(如“订单号”“退货”)和实体(如时间、地点)。意图分类:通过机器学习模型(如BERT、Transformer)将问题归类(如“售后”“支付”)。上下文理解记录对
- DeepSeek、Grok 与 ChatGPT 三巨头:技术架构与应用场景的全方位解析
云策量化
Deepseekchatgptdeepseekgrok
前言在当今人工智能领域,DeepSeek、Grok和ChatGPT作为语言模型的三巨头,各自凭借独特的技术架构和广泛的应用场景,在自然语言处理领域占据着重要地位。本文将对这三款模型的技术架构和应用场景进行全方位解析,以期为读者提供深入的了解和有价值的参考。一、技术架构(一)DeepSeekDeepSeek是由DeepSeek团队开发的一款大型语言模型,其技术架构基于深度学习中的Transforme
- 自然语言处理(5)—— 中文分词
隐私无忧
人工智能#自然语言处理自然语言处理中文分词人工智能
中文分词的基本原理及实现1.什么是词2.基本原理3.发展趋势:多数场景无需显式分词信息处理的目标是使用计算机能够理解和产生自然语言。而自然语言理解和产生的前提是对语言能够做出全面的解析。汉语词汇是语言中能够独立运用的最小的语言单位,是语言中的原子结构。由于中文缺乏类似英文的空格分隔,分词的准确性直接影响后续任务(如机器翻译、情感分析)的效果。因此,对中文进行分词就显得至关重要。中文分词(Chine
- 如何使用JSON输出解析器解析语言模型的输出
vaidfl
json语言模型easyuipython
在现代AI应用中,让语言模型返回结构化的数据是一个重要的能力,特别是在需要进一步处理或集成的时候。本文将深入探讨如何利用JsonOutputParser来解析语言模型的JSON输出。技术背景介绍随着语言模型的普及,许多应用场景需要从自然语言处理任务中获取结构化的输出。针对这一需求,输出解析器应运而生,它能够帮助我们定义JSON模式,通过提示语言模型生成符合该模式的输出,并将其解析为JSON格式。核
- 使用LocalAI进行文本嵌入的实战指南
bavDHAUO
python
技术背景介绍文本嵌入是一种将文本片段转换为高维向量的技术,可以用于自然语言处理任务中的相似性计算、信息检索等应用。LocalAI提供了一种本地化的嵌入解决方案,允许开发者在本地环境中运行和测试嵌入模型。通过在本地部署LocalAI服务,您可以避免依赖外部API,享受更快的响应速度和更好的数据隐私。核心原理解析LocalAIEmbedding类主要负责与本地运行的LocalAI服务通信,进行文本嵌入
- LLM:软件测试的颠覆性力量
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM:软件测试的颠覆性力量关键词:大语言模型(LLM)、软件测试、人工智能、测试自动化、测试效率、质量保证、测试革新1.背景介绍在当今快速发展的软件行业中,测试一直是确保产品质量的关键环节。随着人工智能技术的飞速进步,特别是大语言模型(LargeLanguageModels,简称LLM)的出现,软件测试领域正经历着前所未有的变革。LLM凭借其强大的自然语言处理能力和广泛的知识储备,正在重塑我们对
- 深入了解盘古大模型:技术、应用与未来
Hardess-god
Literaturereview人工智能
随着人工智能技术的迅猛发展,预训练大模型已成为AI领域最前沿、最热门的研究方向之一。近年来,中国自主研发的大模型之一——盘古模型(PanGuModel)逐渐进入公众视野,凭借其强大的性能和广泛的应用前景,引发了行业内外的广泛关注。什么是盘古大模型?盘古大模型是华为公司联合多家科研机构共同研发的超大规模预训练语言模型。该模型以中文数据为主进行训练,旨在推动中文自然语言处理(NLP)以及跨模态应用的技
- 知识图谱中NLP新技术
魔王阿卡纳兹
知识图谱入门大数据治理与分析知识图谱自然语言处理人工智能
知识图谱与自然语言处理(NLP)的结合是当前人工智能领域的前沿方向,其技术发展呈现多维度融合与场景深化的特点。以下从核心技术突破、应用场景创新及未来趋势三个层面,系统梳理知识图谱中NLP的最新进展:一、核心技术突破基于预训练模型的图谱构建与增强预训练语言模型与知识嵌入融合:以BERT、KEPLER为代表的模型通过联合优化知识嵌入(KE)和语言建模目标,将知识图谱中的结构化知识融入预训练过程,显著提
- 使用PyTorch搭建Transformer神经网络:入门篇
DASA13
pytorchtransformer神经网络
1.简介Transformer是一种强大的神经网络架构,在自然语言处理等多个领域取得了巨大成功。本教程将指导您使用PyTorch框架从头开始构建一个Transformer模型。我们将逐步解释每个组件,并提供详细的代码实现。2.环境设置首先,确保您的系统中已安装Python(推荐3.7+版本)。然后,安装PyTorch和其他必要的库:pipinstalltorchnumpymatplotlib3.P
- Python 向量检索库Faiss使用
懒大王爱吃狼
pythonpython开发语言自动化Python基础python教程
Faiss(FacebookAISimilaritySearch)是一个由FacebookAIResearch开发的库,它专门用于高效地搜索和聚类大量向量。Faiss能够在几毫秒内搜索数亿个向量,这使得它非常适合于实现近似最近邻(ANN)搜索,这在许多应用中都非常有用,比如图像检索、推荐系统和自然语言处理。以下是如何使用Faiss的基本步骤和示例:1.安装Faiss首先,你需要安装Faiss。你可
- 使用Python和LangChain构建检索增强生成(RAG)应用的详细指南
m0_57781768
pythonlangchain搜索引擎
使用Python和LangChain构建检索增强生成(RAG)应用的详细指南引言在人工智能和自然语言处理领域,利用大语言模型(LLM)构建复杂的问答(Q&A)系统是一个重要应用。检索增强生成(RetrievalAugmentedGeneration,RAG)是一种技术,通过将模型知识与额外数据结合来增强LLM的能力,使其能够回答关于特定源信息的问题。这些应用不仅限于公开数据,还可以处理私有数据和模
- 基于ChatGPT、GIS与Python机器学习的地质灾害风险评估、易发性分析、信息化建库及灾后重建高级实践
weixin_贾
防洪评价风险评估滑坡泥石流地质灾害
第一章、ChatGPT、DeepSeek大语言模型提示词与地质灾害基础及平台介绍【基础实践篇】1、什么是大模型?大模型(LargeLanguageModel,LLM)是一种基于深度学习技术的大规模自然语言处理模型。代表性大模型:GPT-4、BERT、T5、ChatGPT等。特点:多任务能力:可以完成文本生成、分类、翻译、问答等任务。上下文理解:能理解复杂的上下文信息。广泛适配性:适合科研、教育、行
- 一文说清楚什么是预训练(Pre-Training)、微调(Fine-Tuning),零基础小白建议收藏!!
小城哇哇
人工智能语言模型AI大模型大模型微调预训练agiLLM
前言预训练和微调是现代AI模型的核心技术,通过两者的结合,机器能够在处理复杂任务时表现得更为高效和精准。预训练为模型提供了广泛的语言能力,而微调则确保了模型能够根据特定任务进行细化和优化。近年来,人工智能(AI)在各个领域的突破性进展,尤其是在自然语言处理(NLP)方面,引起了广泛关注。两项重要的技术方法——预训练和微调,成为了AI模型发展的基石。预训练通常是指在大规模数据集上进行模型训练,以帮助
- 文章去除AI味的指令
wirepuller_king
AIword技巧人工智能
去AI味指令-1Role:AI文章人性化优化专家Profile:author:wirepullerVersion:5.2.0Language:中文Description:专门优化AI生成文章,使其更接近人类自然写作风格的专家Background:你是一位精通自然语言处理和人类写作风格的专家。你的任务是将AI生成的文章转化为更自然、更有人情味的文章,去除机械化和公式化的痕迹,增加文章的可读性和亲和力
- anythingLLM 使用教程
惟贤箬溪
穷玩AiAIGC人工智能
一、anythingLLM简介anythingLLM是一款灵活且功能强大的语言模型,它基于先进的深度学习架构构建,旨在为用户提供多样化的自然语言处理服务。其设计理念注重通用性和可扩展性,能够适应多种领域和任务,无论是文本生成、智能问答,还是翻译、摘要提取等,都能展现出出色的性能。与同类模型相比,anythingLLM具有训练数据丰富、模型优化程度高的优势,能够生成更符合逻辑、更具实用性的文本内容。
- GitHub项目推荐--基于LLM的开源爬虫项目
惟贤箬溪
穷玩Aigithub爬虫
以下是一些基于大语言模型(LLM,LargeLanguageModel)的开源爬虫项目,它们结合了自然语言处理(NLP)技术与爬虫的功能,能在一定程度上提升爬取的智能化和精度。这些项目可以用于自动化抓取、内容提取、数据分析等任务。1.GPT-3WebScraper简介:这是一个基于OpenAIGPT-3模型的网页抓取工具,利用GPT-3的自然语言理解能力来生成有用的爬虫策略、处理网页内容并提取有价
- 大模型推理框架:从理论到实践的全面解析
百度_开发者中心
人工智能大模型自然语言处理
在数据驱动的时代,深度学习技术已经渗透到各个行业,从图像识别到自然语言处理,从推荐系统到智能客服,其应用无处不在。然而,深度学习模型的训练和推理过程往往涉及大量数据和复杂计算,传统的计算框架难以满足需求。因此,大模型推理框架应运而生,成为解决这一问题的关键。一、大模型推理框架基本概念大模型推理框架是一种基于深度学习技术的推理框架,它通过对海量数据进行高效的训练和推理,能够快速地对各种复杂场景进行分
- AI时代个人财富增长实战指南:从零基础到精通变现的完整路径
A达峰绮
人工智能
(本文基于人工智能技术发展规律,结合互联网经济底层逻辑,为普通从业者构建系统性AI应用框架)一、建立AI认知基础:技术理解与工具掌握技术分类认知人工智能工具分为四大功能模块:自然语言处理(文本生成、对话交互)、计算机视觉(图像视频处理)、数据分析(预测建模)、自动化控制(流程优化)。建议新手首先掌握语言类工具的基础操作,逐步扩展到其他领域。工具操作逻辑通用AI工具通常包含三大核心功能模块:输入界面
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro