自动识别手写数字
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.io import loadmat
from scipy.optimize import minimize
# 加载mat数据
def load_data(path):
data = loadmat(path)
X = data['X']
y = data['y']
return X,y
def plot_an_image(X):
"""
随机打印一个数字
"""
pick_one = np.random.randint(0, 5000) # 随机选择行数
image = X[pick_one, :] # 提取一行中400个像素点
fig, ax = plt.subplots(figsize=(1, 1)) # 一行一列的图像
ax.matshow(image.reshape((20, 20)), cmap='gray_r') # reshape函数将image重置为20*20的矩阵
plt.xticks([]) # 去除x刻度
plt.yticks([]) # 去除x刻度
plt.show()
print('this should be {}'.format(y[pick_one])) # 输出图像代表的值
def plot_100_image(X):
"""
随机画100个数字
"""
sample_idx = np.random.choice(np.arange(X.shape[0]), 100) # 随机选100个样本
sample_images = X[sample_idx, :] # (100,400)
fig, ax_array = plt.subplots(nrows=10, ncols=10, sharey=True, sharex=True, figsize=(8, 8))
for row in range(10):
for column in range(10):
ax_array[row, column].matshow(sample_images[10 * row + column].reshape((20, 20)),
cmap='gray_r')
plt.xticks([])
plt.yticks([])
plt.show()
# 定义sigmoid函数
def sigmoid(z):
return 1 / (1 + np.exp(-z))
# 代价函数 不惩罚theta0 l是正则化常数
def regularized_cost(theta, X, y, l):
thetaReg = theta[1:]
first = (-y*np.log(sigmoid(X@theta))) + (y-1)*np.log(1-sigmoid(X@theta))
reg = (thetaReg@thetaReg)*l / (2*len(X))
return np.mean(first) + reg
#带惩罚的梯度下降
def regularized_gradient(theta, X, y, l):
thetaReg = theta[1:]
first = (1 / len(X)) * X.T @ (sigmoid(X @ theta) - y)
# 这里人为插入一维0,使得对theta_0不惩罚,方便计算
reg = np.concatenate([np.array([0]), (l / len(X)) * thetaReg])
return first + reg
# 多分类
def one_vs_all(X, y, l, K): # k是标签数
"""generalized logistic regression
args:
X: feature matrix, (m, n+1) # with incercept x0=1
y: target vector, (m, )
l: lambda constant for regularization
K: numbel of labels
return: trained parameters
"""
all_theta = np.zeros((K, X.shape[1])) # (10, 401)
for i in range(1, K + 1):
theta = np.zeros(X.shape[1])
y_i = np.array([1 if label == i else 0 for label in y])
ret = minimize(fun=regularized_cost, x0=theta, args=(X, y_i, l), method='TNC', # 返回一组符合十种数字的参数
jac=regularized_gradient, options={
'disp': True})
all_theta[i - 1, :] = ret.x
return all_theta
def predict_all(X, all_theta):
h = sigmoid(X @ all_theta.T) # 注意的这里的all_theta需要转置
h_argmax = np.argmax(h, axis=1) #找到每一行最大值的索引
h_argmax = h_argmax + 1 #数组是0索引 需要加一个
return h_argmax
# X, y = load_data('ex3data1.mat')
# print(X.shape, y.shape)
# plot_an_image(X)
# plot_100_image(X)
raw_X, raw_y = load_data('ex3data1.mat')
X = np.insert(raw_X, 0, 1, axis=1) # (5000, 401)
y = raw_y.flatten() # 这里消除了一个维度,方便后面的计算 or .reshape(-1) (5000,)
all_theta = one_vs_all(X, y, 1, 10)
all_theta # 每一行是一个分类器的一组参数
y_pred = predict_all(X, all_theta)
accuracy = np.mean(y_pred == y)
print ('accuracy = {0}%'.format(accuracy * 100))
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.io import loadmat
from scipy.optimize import minimize
def load_weight(path):
data = loadmat(path)
return data['Theta1'], data['Theta2']
# 1.读取已经计算好的参数
theta1, theta2 = load_weight('ex3weights.mat')
print(theta1.shape, theta2.shape)
X, y = load_data('ex3data1.mat')
y = y.flatten()
X = np.insert(X, 0, values=np.ones(X.shape[0]), axis=1) #在第一列插入一列零
a1 = X
z2 = a1 @ theta1.T
z2 = np.insert(z2, 0, 1, axis=1) #第二层加一列a0
a2 = sigmoid(z2)
z3 = a2 @ theta2.T # 第三层
a3 = sigmoid(z3)
y_pred = np.argmax(a3, axis=1) + 1
accuracy = np.mean(y_pred == y)
print ('accuracy = {0}%'.format(accuracy * 100)) # accuracy = 97.52%