算法复习9

复杂链表的复制
输入一个复杂链表(每个节点中有节点值,以及两个指针,一个指向下一个节点,另一个特殊指针指向任意一个节点),返回结果为复制后复杂链表的head。(注意,输出结果中请不要返回参数中的节点引用,否则判题程序会直接返回空)

/*
public class RandomListNode {
    int label;
    RandomListNode next = null;
    RandomListNode random = null;

    RandomListNode(int label) {
        this.label = label;
    }
}
*/
public class Solution {
    public RandomListNode Clone(RandomListNode pHead)
    {
        if(pHead==null)
            return null;

        //开辟一个新节点
        RandomListNode pClonedHead=new RandomListNode(pHead.label);
        pClonedHead.next = pHead.next;
        pClonedHead.random = pHead.random;

        //递归其他节点
        pClonedHead.next=Clone(pHead.next);

        return pClonedHead;
    }
}

二叉搜索树与双向链表
输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表。要求不能创建任何新的结点,只能调整树中结点指针的指向。

方法一:非递归版
解题思路:
1.核心是中序遍历的非递归算法。
2.修改当前遍历节点与前一遍历节点的指针指向。
    import java.util.Stack;
    public TreeNode ConvertBSTToBiList(TreeNode root) {
        if(root==null)
            return null;
        Stack stack = new Stack();
        TreeNode p = root;
        TreeNode pre = null;// 用于保存中序遍历序列的上一节点
        boolean isFirst = true;
        while(p!=null||!stack.isEmpty()){
            while(p!=null){
                stack.push(p);
                p = p.left;
            }
            p = stack.pop();
            if(isFirst){
                root = p;// 将中序遍历序列中的第一个节点记为root
                pre = root;
                isFirst = false;
            }else{
                pre.right = p;
                p.left = pre;
                pre = p;
            }      
            p = p.right;
        }
        return root;
    }
方法二:递归版
解题思路:
1.将左子树构造成双链表,并返回链表头节点。
2.定位至左子树双链表最后一个节点。
3.如果左子树链表不为空的话,将当前root追加到左子树链表。
4.将右子树构造成双链表,并返回链表头节点。
5.如果右子树链表不为空的话,将该链表追加到root节点之后。
6.根据左子树链表是否为空确定返回的节点。
    public TreeNode Convert(TreeNode root) {
        if(root==null)
            return null;
        if(root.left==null&&root.right==null)
            return root;
        // 1.将左子树构造成双链表,并返回链表头节点
        TreeNode left = Convert(root.left);
        TreeNode p = left;
        // 2.定位至左子树双链表最后一个节点
        while(p!=null&&p.right!=null){
            p = p.right;
        }
        // 3.如果左子树链表不为空的话,将当前root追加到左子树链表
        if(left!=null){
            p.right = root;
            root.left = p;
        }
        // 4.将右子树构造成双链表,并返回链表头节点
        TreeNode right = Convert(root.right);
        // 5.如果右子树链表不为空的话,将该链表追加到root节点之后
        if(right!=null){
            right.left = root;
            root.right = right;
        }
        return left!=null?left:root;       
    }
方法三:改进递归版
解题思路:
思路与方法二中的递归版一致,仅对第2点中的定位作了修改,新增一个全局变量记录左子树的最后一个节点。
    // 记录子树链表的最后一个节点,终结点只可能为只含左子树的非叶节点与叶节点
    protected TreeNode leftLast = null;
    public TreeNode Convert(TreeNode root) {
        if(root==null)
            return null;
        if(root.left==null&&root.right==null){
            leftLast = root;// 最后的一个节点可能为最右侧的叶节点
            return root;
        }
        // 1.将左子树构造成双链表,并返回链表头节点
        TreeNode left = Convert(root.left);
        // 3.如果左子树链表不为空的话,将当前root追加到左子树链表
        if(left!=null){
            leftLast.right = root;
            root.left = leftLast;
        }
        leftLast = root;// 当根节点只含左子树时,则该根节点为最后一个节点
        // 4.将右子树构造成双链表,并返回链表头节点
        TreeNode right = Convert(root.right);
        // 5.如果右子树链表不为空的话,将该链表追加到root节点之后
        if(right!=null){
            right.left = root;
            root.right = right;
        }
        return left!=null?left:root;       
    }

字符串的排列
输入一个字符串,按字典序打印出该字符串中字符的所有排列。例如输入字符串abc,则打印出由字符a,b,c所能排列出来的所有字符串abc,acb,bac,bca,cab和cba。

import java.util.ArrayList;
import java.util.Stack;
import java.util.TreeSet;
public class Solution {
    public ArrayList<String> Permutation(String str) {
       TreeSet<String> tree = new TreeSet<String>();
       Stack<String[]> stack = new Stack<String[]>();
            ArrayList<String> results = new ArrayList<String>();
            stack.push(new String[]{str,""});
            do{
                String[] popStrs = stack.pop();
                String oldStr = popStrs[1];
                String statckStr = popStrs[0];
                for(int i =statckStr.length()-1;i>=0;i--){
                    String[] strs = new String[]{statckStr.substring(0,i)+statckStr.substring(i+1),oldStr+statckStr.substring(i,i+1)};
                    if(strs[0].length()==0){
                        tree.add(strs[1]);
                    }else{
                        stack.push(strs);
                    }
                }
            }while(!stack.isEmpty());
        for(String s : tree)
            results.add(s);
        return results;
    }
}

源代码:https://github.com/ahongl/algorithm.git

你可能感兴趣的:(算法,算法)