从Dubbo开源文档中看到:Dubbo缺省协议采用单一长连接和NIO异步通讯,适合于小数据量大并发的服务调用,以及服务消费者机器数远大于服务提供者机器数的情况。
Dubbo通信默认采用的是Netty框架。Netty实质就是通过Socket进行通信,Socket(TCP)通信是全双工的方式。
因为采用单一长连接,所以如果消费者多线程请求,服务端处理完消息后返回,就会造成消息错乱的问题。解决这个问题的思路跟解决socket中的粘包问题类似。
socket粘包问题解决方法:用的最多的其实是定义一个定长的数据包头,其中包含了完整数据包的长度,以此来完成服务器端拆包工作。
类似的,那么dubbo解决上述问题的方法:就是给包头中添加一个全局唯一标识id,服务器端响应请求时也要携带这个id,供客户端多线程领取对应的响应数据提供线索。
在HeaderExchangeChannel这个类中,先来看看其中的request方法
public ResponseFuture request(Object request, int timeout) throws RemotingException {
if (closed) {
throw new RemotingException(this.getLocalAddress(), null, "Failed to send request " + request + ", cause: The channel " + this + " is closed!");
}
// create request.
Request req = new Request();
req.setVersion("2.0.0");
req.setTwoWay(true);
req.setData(request);
//这个future就是前面我们提到的:客户端并发请求线程阻塞的对象
DefaultFuture future = new DefaultFuture(channel, req, timeout);
try{
channel.send(req); //非阻塞调用
}catch (RemotingException e) {
future.cancel();
throw e;
}
return future;
}
注意这个方法返回的ResponseFuture对象,当前处理客户端请求的线程在经过一系列调用后,会拿到ResponseFuture对象,最终该线程会阻塞在这个对象的get()方法调用上,如下:
public Object get(int timeout) throws RemotingException {
if (timeout <= 0) {
timeout = Constants.DEFAULT_TIMEOUT;
}
if (! isDone()) {
long start = System.currentTimeMillis();
lock.lock();
try {
while (! isDone()) { //无限连
done.await(timeout, TimeUnit.MILLISECONDS);
if (isDone() || System.currentTimeMillis() - start > timeout) {
break;
}
}
} catch (InterruptedException e) {
throw new RuntimeException(e);
} finally {
lock.unlock();
}
if (! isDone()) {
throw new TimeoutException(sent > 0, channel, getTimeoutMessage(false));
}
}
return returnFromResponse();
}
上面我已经看到请求线程已经阻塞,那么又是如何被唤醒的呢?现在来仔细看一下HeaderExchangeHandler类的定义,先看一下它定义的received方法,下面是代码片段:
public void received(Channel channel, Object message) throws RemotingException {
channel.setAttribute(KEY_READ_TIMESTAMP, System.currentTimeMillis());
ExchangeChannel exchangeChannel = HeaderExchangeChannel.getOrAddChannel(channel);
try {
if (message instanceof Request) {
.....
} else if (message instanceof Response) {
//这里就是作为消费者的dubbo客户端在接收到响应后,触发通知对应等待线程的起点
handleResponse(channel, (Response) message);
} else if (message instanceof String) {
.....
} else {
handler.received(exchangeChannel, message);
}
} finally {
HeaderExchangeChannel.removeChannelIfDisconnected(channel);
}
}
我们主要看中间的那个条件分支,它是用来处理响应消息的,也就是说当dubbo客户端接收到来自服务端的响应后会执行到这个分支,它简单的调用了handleResponse方法:
static void handleResponse(Channel channel, Response response) throws RemotingException {
if (response != null && !response.isHeartbeat()) { //排除心跳类型的响应
DefaultFuture.received(channel, response);
}
}
这里的DefaultFuture,它是实现了我们上面说的ResponseFuture接口类型。
继续来看一下DefaultFuture.received方法的实现细节:
public static void received(Channel channel, Response response) {
try {
DefaultFuture future = FUTURES.remove(response.getId());
if (future != null) {
future.doReceived(response);
} else {
logger.warn("The timeout response finally returned at "
+ (new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS").format(new Date()))
+ ", response " + response
+ (channel == null ? "" : ", channel: " + channel.getLocalAddress()
+ " -> " + channel.getRemoteAddress()));
}
} finally {
CHANNELS.remove(response.getId());
}
}
通过前面说的标志id,DefaultFuture.FUTURES可以拿到具体的那个DefaultFuture对象,它就是上面我们提到的,阻塞请求线程的那个对象。找到目标后,调用它的doReceived方法唤醒对应的线程往下执行:
private void doReceived(Response res) {
lock.lock();
try {
response = res;
if (done != null) {
done.signal();
}
} finally {
lock.unlock();
}
if (callback != null) {
invokeCallback(callback);
}
}