- 深度学习赋能中文情感分析:让机器读懂中国人的喜怒哀乐
芯作者
DD:日记深度学习机器学习人工智能
当你在深夜刷到一条"这奶茶真是绝绝子"的朋友圈,AI如何判断这是真心赞美还是阴阳怪气?当电商评论区出现"手机壳颜色很高级,就是物流太佛系",算法怎样量化其中的情感矛盾?在表情包与网络黑话齐飞的数字时代,中文情感分析技术正经历一场由深度学习驱动的认知革命。本文将深度解析这场让机器理解东方语境下复杂情感的科技进化史。一、中文情感分析:世界上最难破译的"情绪密码"1.中文的语义迷宫一词多义:"这操作66
- LabVIEW闭环控制系统硬件选型与实时性能
LabVIEW开发
LabVIEW参考程序LabVIEW知识LabVIEW功能
在LabVIEW闭环控制系统的开发中,硬件选型直接影响系统的实时性、精度与稳定性。需综合考虑数据采集速度(采样率、接口带宽)、计算延迟(算法复杂度、处理器性能)、输出响应时间(执行器延迟、控制周期)及操作系统定时精度等核心要素。本文结合典型工业场景(如温度控制、运动控制),分析多类型硬件(USB/PCI/PXI/以太网/串口)的适配性,并提供量化选型依据。一、数据采集模块选型分析1.接口类型与传输
- 如何进行项目风险评估
项目管理
进行项目风险评估的核心在于全面识别风险、定量评估、动态监控。其中,全面识别风险要求团队在项目启动前和实施过程中,从各个角度搜集和整理可能影响项目进度、成本、质量及目标达成的各种内外部风险;定量评估则依托数据与模型,将风险发生的概率与影响程度进行量化,从而为后续制定应对策略提供科学依据;动态监控强调在项目全过程中持续跟踪风险变化,并及时调整风险应对措施,确保项目始终处于可控状态。一、项目风险评估的基
- 互信息详解
Shockang
机器学习数学通关指南机器学习人工智能数学信息论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》ima知识库知识库广场搜索:知识库创建人机器学习@Shockang机器学习数学基础@Shockang深度学习@Shockang正文互信息:变量间关联性的量化利器互信息(MutualInformation)是信息论中的核心概念,也是
- DeepSeek发展背景和前景
爱吃苹果的日记本
人工智能
1.成立背景:它的背景是由杭州深度求索人工智能基础技术研究有限公司开发,该公司成立于2023年7月17日,由量化资管巨头幻方量化创立。幻方量化在AI量化对冲基金领域具有深厚的技术积累和资金支持,这为DeepSeek的研发奠定了坚实的基础。2.技术演进:2024年1月:发布首个大模型DeepSeekLLM,包含670亿参数,在2万亿token的数据集上训练,性能超越Llama270BBase。202
- 8.3 GPTQ量化技术:4倍压缩大模型显存,精度零损失!
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力语言模型人工智能gpt
GPTQ量化技术:4倍压缩大模型显存,精度零损失!8.2GPTQ:专为GPT设计的模型量化算法一、模型量化技术背景在讨论GPTQ之前,我们需要先理解大模型部署面临的显存困境。以LLaMA-7B模型为例:FP32精度显存占用:28GBFP16精度显存占用:14GBINT8量化后显存占用:7GBINT4量化后显存占用:3.5GB
- N卡 英伟达Nvidia 显卡及其计算能力(Compute Capability)表
Panesle
显卡Nvidiagpu算力英伟达
N卡英伟达Nvidia显卡及其计算能力(ComputeCapability)表某些库或软件对显卡算力有要求,可参考下表核对。比如:AWQ量化模型不支持算力小于7.5的显卡V100:ValueError:ThequantizationmethodawqisnotsupportedforthecurrentGPU.Minimumcapability:75.Currentcapability:70.
- llama.cpp 安装与量化(mac电脑)
初七i
llamamacosllama.cpp量化ai
llama.cpp安装与量化(mac电脑)1.创建并切换至虚拟环境2.安装llama.cpp3.安装依赖4.转换模型5.创建build目录6.生成构建文件7.编译项目8.运行量化命令9.测试量化后的模型1.创建并切换至虚拟环境condacreate-nllamacpppython=3.10-ycondaactivatellamacpp2.安装llama.cppgitclonehttps://git
- 如何通过API用Python获取北向资金流向数据?
量化问财
量化软件QMT量化交易Python量化炒股PTradeQMT量化交易量化软件deepseek
推荐阅读:《【最全攻略】免费的量化软件有哪些?券商的交易接口怎么获取?》如何通过API用Python获取北向资金流向数据?北向资金指的是通过沪港通和深港通渠道,从香港市场流入A股市场的资金。对于投资者来说,了解北向资金流向对于把握市场趋势和投资决策具有重要意义。本文将介绍如何通过API用Python获取北向资金流向数据。理解北向资金流向数据北向资金流向数据主要包括以下几个方面:资金流入量:指通过沪
- 【高级RAG技巧】使用二阶段检索器平衡检索的效率和精度
深度学习机器
大语言模型深度学习入门人工智能语言模型
一传统方法之前的文章已经介绍过向量数据库在RAG(RetrievalAugmentedGenerative)中的应用,本文将会讨论另一个重要的工具-Embedding模型。一般来说,构建生产环境下的RAG系统是直接使用Embedding模型对用户输入的Query进行向量化表示,并且从已经构建好的向量数据库中检索出相关的段落用户大模型生成。但是这种方法很明显会受到Embedding模型性能的影响,比
- 基于llama_cpp 调用本地模型(llama)实现基本推理
月光技术杂谈
大模型初探llamallama.cpppythonLLM集成显卡本地模型AI
零基础实践本地推理模型基本应用:基于llama_cpp的本地模型调用。本文先安装llama_cpppython库,再编写程序,利用其调用llama-2-7b-chat.Q4_K_M.ggu模型。背景llama_cpp是一个基于C++的高性能库(llama.cpp)的Python绑定,支持在CPU或GPU上高效运行LLaMA及其衍生模型(如LLaMA2),并通过量化技术(如GGUF格式)优化内存使用
- llama.cpp框架下GGUF格式及量化参数全解析
Black_Rock_br
人工智能
前言:在人工智能领域,语言模型的高效部署和推理一直是研究热点。随着模型规模的不断扩大,如何在有限的硬件资源上实现快速、高效的推理,成为了一个关键问题。`llama.cpp`框架以其出色的性能和灵活性,为这一问题提供了有效的解决方案。其中,GGUF格式和模型量化参数是实现高效推理的重要技术手段。本文将对`llama.cpp`框架下的GGUF格式及量化参数进行详细解析,帮助读者更好地理解和应用这些技术
- DeepSeek的发展背景与前景分析
盐都不盐
ai科技人工智能软件需求
DeepSeek(深度求索)作为中国人工智能领域的代表性企业,凭借其技术创新与战略布局,在短时间内迅速崛起,并在全球AI领域引发广泛关注。以下从发展背景与前景两个维度进行综合分析:一、发展背景1.创始团队与资源基础-DeepSeek成立于2023年7月,由量化投资公司幻方量化联合创始人梁文锋创立,核心团队汇聚了北大、清华等顶尖高校的博士及年轻人才,团队规模仅约140人,但效率极高。-幻方量化为其提
- 文本向量化-词嵌入方法系列1:静态词嵌入(Word2Vec+GloVe)
学习ml的小菜鸡
nlp自然语言处理word2vec
文本分散化表示指将语言表示成低维、稠密、连续的向量,分为静态嵌入和动态嵌入两种方式。静态词嵌入有Word2Vec,Sen2Vec,Doc2Vec,以及GloVe模型;而动态词嵌入有ELMO,Transformer,GPT,Bert和XLNet等等。本文主要对静态词嵌入方法做一个整体介绍,动态词嵌入会在系列2中更新。目录1.Word2Vec1.1CBOW1.2Skip-gram1.3Sen2Vec+
- 中小型企业如何选择合适的设备巡检系统?
无代码开发平台二维码
近年来,随着企业数字化转型的深入,中国企业对无代码平台的接受度显著提升,尤其在设备管理领域,二维码巡检系统因其低成本、易部署的特点迅速普及。据统计,类似草料二维码这样的轻量化平台已吸引数十万用户,覆盖制造、物业、消防等多个行业。中小企业往往设备数量有限、管理资源不足,传统的手工记录不仅效率低,还容易出错。而只需给设备贴上二维码,通过手机扫码就能完成巡检记录、拍照留证和数据汇总,显然是性价比极高的解
- 【大模型】DeepSeek-R1-Distill-Qwen部署及API调用
油泼辣子多加
大模型实战算法gptlangchain人工智能
DeepSeek-R1-Distill-Qwen是由中国人工智能公司深度求索(DeepSeek)开发的轻量化大语言模型,基于阿里巴巴的Qwen系列模型通过知识蒸馏技术优化而来。当前模型开源后,我们可以将其部署,使用API方式进行本地调用1.部署环境本文中的部署基础环境如下所示:PyTorch2.5.1Python3.12(ubuntu22.04)Cuda12.4GPURTX3090(24GB)*1
- PyBroker:利用 Python 和机器学习助力算法交易
skywalk8163
人工智能编程语言量化分析python机器学习算法
PyBroker:利用Python和机器学习助力算法交易你是否希望借助Python和机器学习的力量来优化你的交易策略?那么你需要了解一下PyBroker!这个Python框架专为开发算法交易策略而设计,尤其关注使用机器学习的策略。借助PyBroker,你可以轻松创建和微调交易规则,构建强大的模型,并深入了解你的策略表现。PyBroker介绍官方说明文档:利用PyBroker进行量化投资官方说明文档
- 嵌入式开发必读:RTOS选型指南与实例分析
大模型大数据攻城狮
arm开发嵌入式面试嵌入式面经RTOSFreeRTOSNuttXVxWorks
目录一、实时操作系统(RTOS)概述1.1实时性的核心定义1.2关键技术指标指标详解不同RTOS的指标表现1.3RTOS与通用OS的本质区别实例对比使用通用OS的后果二、RTOS选型的重要性三、RTOS选型的关键因素1.实时性要求实时性要求量化分析2.系统资源3.功能需求4.开发工具和支持和开发效率对比5.商业支持和社区活跃度四、常见的RTOS及其适用场景1.FreeRTOS2.VxWorks3.
- 解锁激光焊接新境界:填丝/填粉自适应技术大揭秘
计算机学长
激光控制激光焊接激光
激光焊接的品质之重在现代制造业的宏大版图中,激光焊接已然成为一股不可或缺的关键力量,深深扎根于众多核心领域。从汽车制造的精密车身架构搭建,到航空航天飞行器的关键部件连接,再到电子设备的微型化精密组装,激光焊接以其独特的技术优势,为这些行业的高效生产和产品性能提升提供了坚实保障。在汽车制造领域,激光焊接能够实现车身零部件的高精度连接,有效提升车身的结构强度与刚性,同时降低车身重量,为汽车的轻量化设计
- 炒股开户资金要求是多少?不同证券公司是否有区别?
股票程序化交易接口
量化交易股票API接口Python股票量化交易炒股开户资金要求证券公司股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>开户资金的组成部分炒股开户的资金要求包含多个方面。首先是用于购买股票的资金,这是最直接的部分。投资者需要有一定资金才能买入股票。其次是可能存在的账户管理费等费用的预留资金。有些证券公司会收取一定的账户管理费用,如果没有预留这部分资金,
- 多宠识别:基于计算机视觉的智能宠物管理系统架构解析
深圳市快瞳科技有限公司
计算机视觉宠物系统架构
一、行业痛点与技术方案演进在多宠家庭场景中,传统方案面临三大技术瓶颈:1.生物特征混淆:同品种/毛色宠物识别准确率低于65%2.动态场景适应:进食/奔跑状态下的误检率达30%+3.数据孤岛问题:离线设备无法实现持续学习优化快瞳科技采用**双模态视觉融合架构**,结合轻量化YOLOv7-Tiny模型与CLIP多模态大模型,实现:-98.7%的跨品种宠物识别准确率(CVPR2024最新测试数据)-单次
- YOLOv7-Tiny:轻量化实时目标检测的革新实践
追寻向上
YOLO目标检测人工智能
一、模型定位与核心优势YOLOv7-Tiny作为YOLOv7系列的轻量级版本,专为边缘计算设备和实时检测场景设计。相比标准YOLOv7,其参数量减少约60%(仅6.02M),计算量降至13.2GFLOPs,在保持较高检测精度的同时,推理速度提升至68FPS(NVIDIAV100)。该模型适用于无人机、嵌入式设备、移动端等资源受限场景,在实时性与精度之间实现了极佳平衡。二、模型架构创新主干网络优化深
- 大模型与图数据库RAG通俗流程拆解
gallonyin
产品笔记AI知识图谱
图构建(略)neo4j、tugraph等均可,不影响GraphRAG核心框架模型向量化模型bce-embedding-base_v1重排序模型bce-reranker-base_v1大语言模型Qwen/Qwen2.5-32B-Instruct图数据库tugraph索引faiss核心流程这个调用链日志展示了一个完整的问答系统处理用户输入“百草园里有什么”的过程。本项目使用和参考了开源项目茴香豆。以下
- 迅投miniQMT量化交易之【网格交易】的实现(八)——init_db_tables()方法
QMT量化交易
量化交易数据库python量化交易miniQMT
和大家一起分享如何使用miniQMT实现我们自己的网格交易系统。如果您对量化交易感兴趣,欢迎一起交流。特别声明:本文只从技术层面介绍如何通过miniQMT实现网格交易,尽管相关代码已经笔者实盘验证,但笔者不对读者的实际盈亏负责。本专栏其他文章:使用迅投miniQMT实时监控同花顺自选股,实现自动交易使用python获取同花顺免费版和同花顺远航版自选股数据用于量化交易使用python将选股策略选股结
- 迅投miniQMT实盘大单拆单批量下单方法的实现
QMT量化交易
量化交易python量化交易miniQMT
前面介绍了如何利用迅投miniQMT实现同花顺自选股的盘中实时监控方法,本文和大家一起分享如何利用迅投miniQMT在实盘中实现大单拆单批量下单。特别提示:本文只从技术层面介绍如何实现大单拆单进行批量下单,不对读者的实际盈亏负责。进行实盘下单前,请务必检查好各参数!本专栏文章:使用迅投miniQMT实时监控同花顺自选股,实现自动交易使用python获取同花顺免费版和同花顺远航版自选股数据用于量化交
- Python在数字货币交易中的算法设计:从策略到实践
Echo_Wish
Python!实战!python算法开发语言
Python在数字货币交易中的算法设计:从策略到实践随着区块链技术的发展和加密货币市场的繁荣,数字货币交易已经成为金融领域的一个重要分支。从个体投资者到量化基金,算法交易(AlgorithmicTrading)正在为提高交易效率和决策质量提供强大的支撑。在这些技术应用中,Python凭借其丰富的生态系统和简洁的语法,成为开发交易算法的首选语言。今天,我将带你深度探讨Python在数字货币交易中的算
- 使用 llama.cpp 框架进行 RWKV 模型的推理
步子哥
AGI通用人工智能llama人工智能
欢迎来到RWKV推理文档的世界!在这里,我们将一起探索如何使用llama.cpp框架进行RWKV模型的推理,仿佛在进行一场科技的冒险之旅。准备好了吗?让我们一起揭开神秘的面纱吧!什么是llama.cpp?Llama.cpp是一个轻量化的大语言模型运行框架,专门为在CPU上优化模型性能而设计。如果你曾经觉得CPU的处理速度像在慢动作中走路,那么你一定会喜欢这个工具!它让RWKV-6模型的运行像一阵微
- 如何在移动端优化ALU,降低手机发热和功耗 高级TA必看指数★★★★☆
熊猫悟道
unityshader材质着色器unity游戏引擎
最近工作中,未了进一步提升美术渲染效果,不得已我们需要从数学的角度优化我们的图形渲染,减少不必要的ALU和MUL,从而提升运行效率。提供更多的渲染效果支持。当然,虽然我们游戏现在发热已经控制的比较完美了,但是我们还能从硬件级优化。接下来就是我这段时间用了半斤头发研究出来的方案。绝对干货,优化图形这块照搬即可。总结一下,可能的优化步骤包括:减少复杂数学运算,使用近似或预计算。优化向量化运算,利用SI
- 8.6 “6.7GB→3.9GB!“Facebook OPT模型4-bit量化实战:显存狂降85%教程
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力语言模型人工智能gpt
6.7GB→3.9GB!FacebookOPT模型4-bit量化实战:显存狂降85%教程实战FacebookOPT模型量化模型量化原理与技术选型在模型量化实战前,我们需要理解OPT模型的显存占用特点。以OPT-6.7B模型为例,其参数量为6.7B,每个参数默认使用FP32(4字节)存储时,显存占用计算公式为:显存占用=参数量×数据类型字节数=6.7B×4B=26.8GB当前主流的量化技术路线对比如
- DeepSeek R1-32B医疗大模型的完整微调实战分析(全码版)
Allen_LVyingbo
医疗高效编程研发健康医疗人工智能python
DeepSeekR1-32B微调实战指南├──1.环境准备│├──1.1硬件配置││├─全参数微调:4*A10080GB││└─LoRA微调:单卡24GB│├──1.2软件依赖││├─PyTorch2.1.2+CUDA││└─Unsloth/ColossalAI│└──1.3模型加载│├─4bit量化加载│└─FlashAttention2加速├──2.数据集构建│├──2.1数据源││├─CMD
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p