DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测

DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测

 

 

 

目录

输出结果

设计思路

核心代码


 

 

 

 

 

输出结果

DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测_第1张图片DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测_第2张图片

下边两张图对应查看,可知,数字0有965个是被准确识别到!

DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测_第3张图片DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测_第4张图片DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测_第5张图片

DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测_第6张图片DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测_第7张图片

DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测_第8张图片DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测_第9张图片

 

1.10.0
Size of:
- Training-set:		55000
- Validation-set:	5000
- Test-set:		10000
Epoch 1/1

  128/55000 [..............................] - ETA: 14:24 - loss: 2.3439 - acc: 0.0938
  256/55000 [..............................] - ETA: 14:05 - loss: 2.2695 - acc: 0.1016
  384/55000 [..............................] - ETA: 13:20 - loss: 2.2176 - acc: 0.1302
  512/55000 [..............................] - ETA: 13:30 - loss: 2.1608 - acc: 0.2109
  640/55000 [..............................] - ETA: 13:29 - loss: 2.0849 - acc: 0.2500
  768/55000 [..............................] - ETA: 13:23 - loss: 2.0309 - acc: 0.2734
  896/55000 [..............................] - ETA: 13:30 - loss: 1.9793 - acc: 0.2946
 1024/55000 [..............................] - ETA: 13:23 - loss: 1.9105 - acc: 0.3369
 1152/55000 [..............................] - ETA: 13:22 - loss: 1.8257 - acc: 0.3776
……
53760/55000 [============================>.] - ETA: 18s - loss: 0.2106 - acc: 0.9329
53888/55000 [============================>.] - ETA: 16s - loss: 0.2103 - acc: 0.9330
54016/55000 [============================>.] - ETA: 14s - loss: 0.2100 - acc: 0.9331
54144/55000 [============================>.] - ETA: 13s - loss: 0.2096 - acc: 0.9333
54272/55000 [============================>.] - ETA: 11s - loss: 0.2092 - acc: 0.9334
54400/55000 [============================>.] - ETA: 9s - loss: 0.2089 - acc: 0.9335 
54528/55000 [============================>.] - ETA: 7s - loss: 0.2086 - acc: 0.9336
54656/55000 [============================>.] - ETA: 5s - loss: 0.2082 - acc: 0.9337
54784/55000 [============================>.] - ETA: 3s - loss: 0.2083 - acc: 0.9337
54912/55000 [============================>.] - ETA: 1s - loss: 0.2082 - acc: 0.9337
55000/55000 [==============================] - 837s 15ms/step - loss: 0.2080 - acc: 0.9338

   32/10000 [..............................] - ETA: 21s
  160/10000 [..............................] - ETA: 8s 
  288/10000 [..............................] - ETA: 6s
  448/10000 [>.............................] - ETA: 5s
  576/10000 [>.............................] - ETA: 5s
  736/10000 [=>............................] - ETA: 4s
  864/10000 [=>............................] - ETA: 4s
 1024/10000 [==>...........................] - ETA: 4s
 1152/10000 [==>...........................] - ETA: 4s
 1312/10000 [==>...........................] - ETA: 4s
 1440/10000 [===>..........................] - ETA: 4s
 1600/10000 [===>..........................] - ETA: 3s
 1728/10000 [====>.........................] - ETA: 3s
……
 3008/10000 [========>.....................] - ETA: 3s
 3168/10000 [========>.....................] - ETA: 3s
 3296/10000 [========>.....................] - ETA: 3s
 3456/10000 [=========>....................] - ETA: 2s
……
 5248/10000 [==============>...............] - ETA: 2s
 5376/10000 [===============>..............] - ETA: 2s
 5536/10000 [===============>..............] - ETA: 2s
 5664/10000 [===============>..............] - ETA: 1s
 5792/10000 [================>.............] - ETA: 1s
……
 7360/10000 [=====================>........] - ETA: 1s
 7488/10000 [=====================>........] - ETA: 1s
 7648/10000 [=====================>........] - ETA: 1s
 7776/10000 [======================>.......] - ETA: 1s
 7936/10000 [======================>.......] - ETA: 0s
 8064/10000 [=======================>......] - ETA: 0s
 8224/10000 [=======================>......] - ETA: 0s
……
 9760/10000 [============================>.] - ETA: 0s
 9920/10000 [============================>.] - ETA: 0s
10000/10000 [==============================] - 4s 449us/step
loss 0.05686537345089018
acc 0.982
acc: 98.20%
[[ 965    0    4    0    0    0    4    1    2    4]
 [   0 1128    3    0    0    0    0    1    3    0]
 [   0    0 1028    0    0    0    0    1    3    0]
 [   0    0   10  991    0    2    0    2    3    2]
 [   0    0    3    0  967    0    1    1    1    9]
 [   2    0    1    7    1  863    5    1    4    8]
 [   2    3    0    0    3    2  946    0    2    0]
 [   0    1   17    1    1    0    0  987    2   19]
 [   2    0    9    2    0    1    0    1  955    4]
 [   1    4    3    2    8    0    0    0    1  990]]


_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         (None, 784)               0         
_________________________________________________________________
reshape (Reshape)            (None, 28, 28, 1)         0         
_________________________________________________________________
layer_conv1 (Conv2D)         (None, 28, 28, 16)        416       
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 14, 14, 16)        0         
_________________________________________________________________
layer_conv2 (Conv2D)         (None, 14, 14, 36)        14436     
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 7, 7, 36)          0         
_________________________________________________________________
flatten (Flatten)            (None, 1764)              0         
_________________________________________________________________
dense (Dense)                (None, 128)               225920    
_________________________________________________________________
dense_1 (Dense)              (None, 10)                1290      
=================================================================
Total params: 242,062
Trainable params: 242,062
Non-trainable params: 0
_________________________________________________________________
(5, 5, 1, 16)
(1, 28, 28, 16)

 

设计思路

DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测_第10张图片

 

 

 

核心代码

后期更新……

path_model = 'Functional_model.keras'  
                  
from tensorflow.python.keras.models import load_model  
model2_1 = load_model(path_model)      

model_weights_path = 'Functional_model_weights.keras'
model2_1.save_weights(model_weights_path )                  
model2_1.load_weights(model_weights_path, by_name=True ) 
model2_1.load_weights(model_weights_path)  


result = model.evaluate(x=data.x_test,
                        y=data.y_test)
  
for name, value in zip(model.metrics_names, result):
    print(name, value)
print("{0}: {1:.2%}".format(model.metrics_names[1], result[1]))


y_pred = model.predict(x=data.x_test) 
cls_pred = np.argmax(y_pred, axis=1)   
plot_example_errors(cls_pred)        
plot_confusion_matrix(cls_pred)     
 
 

images = data.x_test[0:9]                      
cls_true = data.y_test_cls[0:9]                 
y_pred = model.predict(x=images)               
cls_pred = np.argmax(y_pred, axis=1)            
title = 'MNIST(Sequential Model): plot predicted example, resl VS predict'
plot_images(title, images=images,               
            cls_true=cls_true,
            cls_pred=cls_pred)

 

 

 

 

你可能感兴趣的:(DL,Keras/Caffe)