几种算法思想概要

动态规划(Dynamic programming)

https://zh.wikipedia.org/wiki/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92

https://blog.csdn.net/u013445530/article/details/40210587

是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。

动态规划常常适用于有重叠子问题[1]和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。

动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再根据子问题的解以得出原问题的解。

通常许多子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量:一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个子问题解之时直接查表。这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。

动态规划在查找有很多重叠子问题的情况的最优解时有效。它将问题重新组合成子问题。为了避免多次解决这些子问题,它们的结果都逐渐被计算并被保存,从简单的问题直到整个问题都被解决。因此,动态规划保存递归时的结果,因而不会在解决同样的问题时花费时间。

动态规划只能应用于有最优子结构的问题。最优子结构的意思是局部最优解能决定全局最优解(对有些问题这个要求并不能完全满足,故有时需要引入一定的近似)。简单地说,问题能够分解成子问题来解决。

实例:斐波那契数列(Fibonacci polynomial),最长公共子序列,01背包问题

 

迪杰斯特拉算(Dijkstra's algorithm)

戴克斯特拉算法使用了广度优先搜索解决赋权有向图的单源最短路径问题。该算法存在很多变体;戴克斯特拉的原始版本找到两个顶点之间的最短路径,但是更常见的变体固定了一个顶点作为源节点然后找到该顶点到图中所有其它节点的最短路径,产生一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。举例来说,如果图中的顶点表示城市,而边上的权重表示城市间开车行经的距离,该算法可以用来找到两个城市之间的最短路径。

https://zh.wikipedia.org/wiki/%E6%88%B4%E5%85%8B%E6%96%AF%E7%89%B9%E6%8B%89%E7%AE%97%E6%B3%95

https://www.zhihu.com/question/22311234

梯度提升树

梯度提升树(GBT),还可以称为梯度提升决策树(GBDT)、梯度提升回归树(GBRT)等。是应用非常广泛的机器学习算法。GBDT属于集成学习boosting算法,其弱学习器可使用CART决策

你可能感兴趣的:(研究)