基于WFST的字素因素转换(g2p):开源组件

概要:support EM sequence alignment(最大期望序列),与RNNLM结合perform well。同时也展示了Lattice Minimum 贝叶斯译码(LMBR)。Toolkit用Openkit运行。

简介:(Spanish and Italian) rule of them are consistent, it is straightforward for conversion. however, it is more complex for English and French. 

structure:

scetion 2:background

g2p probelm including:

1,sequence alignment(align the sequence between grapheme and phoneme)

2,model train

3,decode

section 3:alignment approach

WFST(feature:EM-drived,mutiple to mutiple)

modifications including:

1,while training: considering m2one nad one2m.

2,construct lattice and delete unconnected arcs.

3,non zero.

section 4:joint-sequence LM(language model)

procedure

1,

2,

3,N-gram ->WFST(applied in all language)

section 5:decode approach

音素格子的最短路径

section 6:previous experiment

文中提出的m2m-fst-P和rnnlm-P能够达到高水平。

section 7:usage and conmmand

NETTalk的例子


term:data-drived(数据驱动),state of the art(达到高水准的),lattice(格子框架),ASR(automatic speech recognization),

文中用到的测试字典:NETTalk、CMUdict和OLAD(牛津进阶)

你可能感兴趣的:(g2p)