Learning notes - 2018-04-26

1,  bugs in Cmake 实践

http://sewm.pku.edu.cn/src/paradise/reference/CMake%20Practice.pdf

(a), error: no CmakeLists.txt

solution: file name should be 'CMakeLists.txt', not 'CmakeLists.txt'

(b) error: not found SRC_LIST

solution:

ADD_EXECUTABLE(hello )

should be :

ADD_EXECUTABLE(hello ${SRC_LIST})


(c)error: stray ‘\200’ in program

solution:  should be use english input method, not use 中文输入法 or copy from webpage

  https://blog.csdn.net/pestd/article/details/9630415


2,ubuntu 16.04 英文版命令行安装中文语言包

https://baike.baidu.com/item/ibus/10117238?fr=aladdin

http://wiki.ubuntu.org.cn/IBus

https://wiki.archlinux.org/index.php/IBus_(%E7%AE%80%E4%BD%93%E4%B8%AD%E6%96%87)

sudo apt-get install ibus-libpinyin

3,关于Ubuntu下的PDF阅读器

https://blog.csdn.net/u013063153/article/details/53899708
Ubuntu 下最好用的pdf阅读器okular
https://blog.csdn.net/whuslei/article/details/7196218


4, 动态库和静态库的区别

https://zhidao.baidu.com/question/1946953913764139388.html


5, Detectron for R-CNN

https://github.com/facebookresearch/Detectron

Detectron is Facebook AI Research's software system that implements state-of-the-art object detection algorithms, including Mask R-CNN. It is written in Python and powered by the Caffe2 deep learning framework.

At FAIR, Detectron has enabled numerous research projects, including: Feature Pyramid Networks for Object Detection, Mask R-CNN, Detecting and Recognizing Human-Object Interactions, Focal Loss for Dense Object Detection, Non-local Neural Networks, Learning to Segment Every Thing, Data Distillation: Towards Omni-Supervised Learning, DensePose: Dense Human Pose Estimation In The Wild, and Group Normalization.



你可能感兴趣的:(Learning notes - 2018-04-26)