Spark笛卡尔积实现方案描述

val conf = new SparkConf().setAppName("tst_cartesian").setMaster("local")
val sc = new SparkContext(conf)

//val pairs = sc.parallelize(Array(("a", Vectors.dense(1)), ("b", Vectors.dense(2)), ("c", Vectors.dense(3))  ))
val pairs = sc.parallelize(List("a", "b", "c"))
//1.默认算子,性能尚可,但简易可用
val cartesian_rdd = pairs.cartesian(pairs)
println("--------cartesian--------")
cartesian_rdd.foreach(println(_))

//2.自定义实现,性能一般,但结果优异,只取到上三角的对象
def combs(rdd: RDD[String]): RDD[(String, String)] = {
  val count = rdd.count
  if (rdd.count < 2) {
    sc.makeRDD[(String, String)](Seq.empty)
  } else if (rdd.count == 2) {
    val values = rdd.collect
    sc.makeRDD[(String, String)](Seq((values(0), values(1))))
  } else {
    val elem = rdd.take(1)
    val elemRdd = sc.makeRDD(elem)
    val subtracted = rdd.subtract(elemRdd)
    val comb = subtracted.map(e => (elem(0), e))
    comb.union(combs(subtracted))
  }
}
val cartesian_rdd2 = combs(pairs)
println("--------combs--------")
cartesian_rdd2.foreach(println(_))

//3.Join实现。性能待定
//key值相同,value实现笛卡尔积组合

//4.将rdd拉动driver端,用两层循环实现。耗费driver-memory,性能不可控。
val drivers = pairs.collect()
var empnos = scala.collection.mutable.ArrayBuffer[(String, String)]()
for (driver_one <- drivers) {
  for (driver_two <- drivers) {
    val pair_empno = (driver_one, driver_two)
    empnos += pair_empno
  }
}
println("--------drive--------")
empnos.foreach(println(_))

println("结论:Spark不要轻易计算笛卡尔积!")

你可能感兴趣的:(Spark)